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a b s t r a c t

We present a new particle tracking algorithm for accurately resolving large deformation and rotational
motion fields, which takes advantage of both local and global particle tracking algorithms. We call
this method ScalE and Rotation Invariant Augmented Lagrangian Particle Tracking (SerialTrack). This
method builds an iterative scale and rotation invariant topology-based feature vector for each particle
within a multi-scale tracking algorithm. The global kinematic compatibility condition is applied as
a global augmented Lagrangian constraint to enhance tracking accuracy. An open source software
package implementing this numerical approach to track both 2D and 3D, incremental and cumulative
deformation fields is provided.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v1.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-22-00070
Code Ocean compute capsule
Legal code license MIT license
Code versioning system used git
Software code languages, tools, and services used MATLABa

Compilation requirements, operating environments & dependencies MATLAB with the following toolboxes: Curve Fitting Toolbox, Image
Processing Toolbox, Parallel Computing Toolbox, Statistics and Machine
Learning Toolbox, Wavelet Toolbox

If available link to developer documentation/manual https://github.com/FranckLab/SerialTrack/manual.pdf
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aCertain commercial equipment, software and/or materials are identified in this paper in order to adequately specify the experimental procedure. In no case does
such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the equipment and/or
materials used are necessarily the best available for the purpose.

1. Motivation and significance

Single particle tracking (SPT) and particle tracking velocimetry
PTV) methods provide quantitative, temporally resolved mea-
urements of motions and deformations to investigate complex
ynamics at the resolution of single tracking features by automat-
cally localizing and tracking individual particles [1–3]. This is in
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E-mail address: cfranck@wisc.edu (Christian Franck).

contrast to digital image/volume correlation (DIC/DVC) and par-
ticle image velocimetry (PIV), which are subset-correlation-based
techniques (see a summary of various full-field tracking methods
in Table 1). The increased specificity of the tracked particles
can be beneficial to applications such as quantitative biological
motion tracking [4–9] and fluid mechanics for flow measure-
ments [2,10–12]. However, it remains a challenge to uniquely and
robustly match particles throughout an image sequence.

Particle tracking methods have been used to study multiple

length and time scales in soft materials and rheology [13,14],
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Table 1
Comparison of different full-field measurement methods.
Technique name PIV DIC DVC PTV SPT SerialTrack

(this work)

Considering particle shape
distortion or not

No Yes Yes No No Yes

Matching continuous patches (C)
or discrete feature points (D)

C C C C D D

2D image sequence or 3D
volumetric image

2D & 3D 2D 3D 2D & 3D 2D & 3D 2D & 3D

Tracking velocity field (v) or
cumulative displacement (u)

v u u v u v & u

Table 2
Comparison of different open-source particle tracking codes.
Name Refs Language Dim. Particle linking algorithm

PTVlab [29,30] MATLAB 2D Integrated cross-correlation and relaxation
algorithm

OpenPTV [31] C & Python 3D A spatio-temporal matching algorithm [32]
TrackMate [33,34] MATLAB & Fiji 2D & 3D LAP, u-track, Kalman filter, etc [35].
TracTrac [36,37] MATLAB & Python 2D K-dimensional trees to search and compute

statistics around neighboring objects
TPT [27,38] MATLAB 3D Topology-based matching and iterative

deformation warping (IDM)
FM-Track [39] Python 3D Rotation-invariant topology-based matching
Part2Track [40] MATLAB 2D Nearest neighbor searching or histogram

matching
KNOT [41] Python 2D & 3D Adaptive analysis on the single frame

displacements produced from point clouds
Trackpy [42,43] Python 2D & 3D Finds the most likely set of assignments that

match each feature in the previous frame [13]
SerialTrack
(this work)

[44] MATLAB 2D & 3D Scale and rotation-invariant topology-based
matching and augmented Lagrangian global
kinematic compatibility constraint

experimental physics [15], materials science [16,17], and geo-
physics [18]. There are a number of SPT and PTV algorithms
created for various applications [19,20] but they are often spe-
cialized, and typically require either small inter-frame deforma-
tions [21–23] or sparse [24–26] /dense [27,28] particle seeding
volumes to perform well.

Particle tracking procedures can generally be divided into two
teps: (i) particle localization, where coordinates of individual
particles are extracted from each frame of an image sequence, and
(ii) particle linking, where detected particles are uniquely matched
from frame to frame to construct a motion field.

Particle localization algorithms often decompose the process
into particle detection followed by subpixel centroid localization.
For example, images are pre-processed to reduce noise and se-
lectively enhance objects, then particle spots or feature locations
are detected by applying image segmentation, local-maxima find-
ing, or other thresholding criteria. Particle centroid locations are
often estimated by applying Gaussian fitting [45,46] or intensity-
based centroid measurements [47,48]. In general, all of the above
image processing-based methods perform well for images with
sufficiently high signal-to-noise ratios (SNR ≥ 5). Recently, ma-
hine learning-based methods have been developed that can
otentially improve performance in images with spatiotemporal
eterogeneity and poor signal-to-noise ratios [33,41,49].
Various algorithms have been created to detect and track

ndividual particles [1] such as the straightforward k-nearest-
eighbor (kNN) searches, topology-based approaches where neigh-
oring particles are employed to construct local surrounding
opology features [27,36,50–52], globally optimized search prob-
ems — including linear assignment programming [26], Kalman
iltering [53], relaxation methods [19,54], and feature vector-
ased techniques [22,25] (see a brief summary of particle tracking
pen-source codes in Table 2). Among these methods, the near-
st neighbor-type search algorithms are typically suitable for

smaller than the typical interparticle separation distance. The
more robust topology-based and feature-based particle tracking
algorithms are able to resolve large deformation fields but favor
large particle numbers. The relaxation-based approaches perform
well on highly stochastic motion fields but require small inter-
frame motions. The nearest-neighbor and local topology-based
methods are computationally efficient and can be easily imple-
mented in parallel. However, they both have limitations in regard
to particle seeding densities and there is no guarantee that the
final tracked motion fields are unique and kinematically admissi-
ble. Global optimization particle tracking methods can guarantee
the uniqueness and kinematic admissibility of the tracked motion,
but are typically computationally expensive.

Here we present a new particle tracking algorithm, called
the ScalE and Rotation Invariant Augmented Lagrangian Par-
ticle Tracking (SerialTrack) method, which takes advantage of
both local (i.e., nearest-neighbor search and local-topology-based
feature tracking [27,40]) and global optimization to reconstruct
motion fields in either 2D or 3D, and with large, complex defor-
mations for both sparse and dense particles efficiently, robustly
and accurately. This new method first builds a local scale and
rotation invariant topology-based feature vector for each particle,
then iteratively tracks these within a global multiscale algorithm.
The global kinematic compatibility condition is applied as an
augmented Lagrangian constraint [55,56] to enhance the track-
ing accuracy. In addition to tracking incremental deformation
between two subsequent frames, SerialTrack can track large cu-
mulative deformations where the initial guess of each tracking
displacement field has been improved by a data-driven reduced
order modeling method [57]. The new method includes both
particle localization and particle linking processes, and also may
optionally account for shape distortion of particles due to large
elatively low numbers of particles that undergo displacements deformations.
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Fig. 1. SerialTrack’s Workflow. The first step in SerialTrack’s workflow is the specification of the application’s dimensionality, i.e., 2D (pixel image) or 3D (volumetric
voxel image). Hard vs. soft particles further specify whether tracker particle deformations are to be expected. The tracking mode defines the scheme for selecting
images from the experimental image sequence. Finally, the particles detection, linking, and post-processing preferences are specified by the user based on the
particular experimental configuration at hand and the desired output data.

2. Software description

2.1. Software architecture

The basic workflow of the SerialTrack implementation is sum-
arized in Fig. 1. SerialTrack requires the users to provide their
aptured 2D and 3D (volumetric) image pairs or image sequence.
n solid mechanics and material sciences, 3D image volumes can
e scanned in multiple layers using confocal cameras, X-ray CT,
RI, or other imaging modalities. In fluid mechanics, these 3D
olumes are typically reconstructed from several camera POVs
sing multi-view stereoscopy with one or more sensors, see for
xample [10,11]. The code package includes both 2D (Serial-
rack2D) and 3D (SerialTrack3D) particle tracking examples and
hree executing modes: (i) incremental, (ii) cumulative, and (iii)
ouble frame. In incremental mode, two consecutive frames are
ompared to infer incremental motion between frames, while
n cumulative mode, later frames are compared with the first,
ndeformed reference frame to reconstruct their total motions.
n 2D cases, we also include the ‘‘double frame’’ mode where two
rames are taken under every single exposure with a temporal
elay and each odd number frame is compared to its subsequent
ven number frame. One advanced feature of the 2D cumulative
ode is that the effect of particle shape distortion can be con-
idered. We consider particles to be ‘‘soft’’ if any particle shape
hange coincides with the local material deformation gradients,
nd consider particles ‘‘hard’’ if the shape is effectively rigid and
nvariant throughout the experiment.

During the tracking process, we detect each individual particle
n both reference and deformed images and then link them to
btain the full-field motions throughout an image sequence. We
ill discuss these functionalities in Sections 2.2–2.4.

.2. Software functionalities: particle detection

In the SerialTrack implementation, we leverage state-of-the-
rt particle detection methods where the minimum size of par-
icles that can be effectively detected are usually 3 pixels by
pixels (see more details in the description of each detection
ethod below and references therein). In the first of two ap-
roaches to detect individual single particles, we employ the
ame method used in Patel et al. [27] where images are thresh-
lded based on a user-specified cutoff to segment particles from
ackground as binary connected components, and then rapidly
ocalize particle centroids with sub-pixel accuracy using the radial
ymmetry method [47,48]. In the second method, particles are
etected by a Laplacian of Gaussian image filtering technique,
ollowed by a Gaussian interpolation of the particle peak intensi-
ies [36,40]. Numerous techniques exist for particle segmentation
nd centroid localization — while these two perform well in
ur test cases, for different imaging modalities or particle types
ther methods may be more appropriate. Good particle detection,
egmentation, and localization are critical for accurate tracking.

In this regard, the code is highly extensible, and other algorithms
can easily be added since the core algorithm simply expects a list
of centroid coordinates for each image as input.

2.3. Software functionalities: particle linking

We describe our particle linking process in this section. We
summarize the code outline in Algorithm 1. A mathematical
formulation of the particle tracking problem is summarized in
Appendix A, where a regularizer is added to the particle matching
optimization functional (A.4) to enforce the uniqueness of the
solution. In our implementation, this optimization problem is
solved by the alternating direction method of multipliers (ADMM)
scheme summarized in Appendix B. In each ADMM iteration,
there are two displacement u and û. The vector u is the locally
solved displacement from matching each individual particle’s fea-
ture descriptor (see Section 2.3.1). The û vector is the global dis-
placement, obtained from projecting the local u vector onto the
global, kinematically compatible space (see Appendix Eq. (A.4)).
To solve the ADMM local step of Eq (B.2), particles are linked
between frames using a new particle descriptor (i.e., feature
vector), which is defined based on the topological arrangement of
randomly located neighbors in a framework similar to those de-
scribed in Patel et al. [27], Janke et al. [40], and Lejeune et al. [39].
Here we improve the previous topology-based relative neighbor
feature to be 2D/3D scale- and rotation-invariant, as shown in
Section 2.3.1.

During the iterative matching process, a universal outlier re-
moval scheme [6] is also incorporated to enhance the quality of
the reconstructed displacement field. During each ADMM itera-
tion, we also detect and remove ghost particles, i.e., particles that
are only detected once in the two compared frames, to improve
the robustness of each particle’s topology-based feature vector
(see Section 2.3.2).

To track total, cumulative displacement fields, sometimes called
Lagrangian particle tracking, we describe two strategies in Sec-
tion 2.3.3. Finally, we also discuss minimizing errors due to
particle shape distortions in Section 2.3.4, since in some exper-
imental instances particles may deform significantly according
to local deformation gradients, and thus shape change must be
accounted for in the localization process.

2.3.1. Topology-based scale and rotation-invariant particle descrip-
tor

For each individual particle, the relative position between the
k nearest neighbor particles and the selected particle is encoded
into a complete particle descriptor consisting of two feature
vectors. For the 2D case, an angle-based feature is defined as an
array of polar angles between each of the k neighboring particles,
i.e., [θ1, θ2, . . . , θk]T , as shown in Fig. 2(a–b). An array of interpar-
ticle Euclidean distances is also constructed as a distance-based
feature, i.e., [r , r , . . . , r ]T , where distances are normalized by
1 2 k

3
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Fig. 2. Diagram outlining the descriptor generation process. (a) The k radii and angles to nearest neighbor particles within the search distance for each particle (b)
The same computation is performed in the deformed image. By simultaneously minimizing Euclidean distance for angular and distance mismatch, we achieve a fast
linking procedure that is scale and rotation invariant, and thus robust under most kinematically admissible deformations. (c & d) The analogous process for a 3D
(volumetric) case, where the basis space for the descriptors is computed locally from each particle’s three nearest neighbors.

the first nearest neighbor particle distance. For the 3D case, anal-
ogous to the 2D descriptor, 3D radial distances (r), polar angles
(θ ), and azimuthal angles (φ) of the stored k neighboring particles
re used to construct particle descriptors for each particle. To
stablish a coordinate system, {e1, e2, e3}, for each particle, we
efine the first nearest neighbor particle direction as the e1 axis.
he e3 direction is defined to be perpendicular to the first and
econd nearest neighbor particles, and must satisfy e3 · r3 > 0
here r3 is the third nearest neighbor particle direction. The e2
xis is defined as e3 × e1 where "× " is the cross product. As in
D, the radial distance (r) feature is the Euclidean interparticle

distance normalized by the first nearest neighbor particle dis-
tance. The design of these descriptors is advantageous since they
fully encode the relative spatial positions of neighboring particles.
They can also be cheaper to compute compared to normalized
correlation-based tracking algorithms, with a possible reduction
in the computational cost on the order of (# of image pixels) / (#
of particles). The constructed particle descriptors are scale and
rotation invariant, which allows for the proper reconstruction
of large deformations and rotations while retaining similarity
between descriptors during tracking.

To establish successful particle matches between frames, the
topology-based descriptor for each identified particle is computed
by independently minimizing the Euclidean distance (summation
of squared differences) between the distance-based feature and
angle-based features, respectively. We consider two particles to
be matched, i.e., to be the same physical particle in both frames,
if they attain minimum radial and angular descriptors simulta-
neously. During the ADMM iterations, we apply a particle count
scaling strategy, such that the number of nearest neighboring par-
ticles for each local matching step, k, is exponentially decreased
rom a user-selected starting value (typically 10’s of particles)
o 1. When k equals 1, our method is identical to the nearest
neighbor search [40]. This scaling strategy helps to address vari-
able particle densities — we have found that features relying on
many local particles (high k) perform well for densely seeded
regions, whereas features with lower k are better performing for
sparsely seeded regions. In both cases, a maximum search radius
for particles to include can be specified to reduce the overall
computational cost while building the features.

2.3.2. Removing ghost particles
There may exist particles that are only detected once in the

two frames, which are termed ghost particles [23]. These may

Algorithm 1: Outline of the ‘‘hard’’ particle tracking procedure

Input: Two images fn and fn+t
Step 1: Detect particles in images fn and fn+t ;
Step 2: (Optional) Warp detected particle coordinates in fn+t with
a predictor for displacement û;

Step 3: Set dual variable θ to be zero. Set IterNum = 1, and M = 0;
while

⏐⏐ûk+1
− ûk

⏐⏐ > ε and IterNum < IterMax and M < 5 do
%%%%% Subproblem 1: fix ûk and solve uk+1 locally %%%%%;
Step 4: Build a topology-based, scale and rotation invariant
descriptor for each particle;

Step 5: Match particle features and calculate MatchRatio;
%%%%% Subproblem 2: fix uk+1 and solve ûk+1 globally %%%%%;
Step 6: Solve Eq (B.3);

Step 7: (Optional) Remove ghost particles using Eq (1);
Step 8: Update dual variable: θk+1

← θk
+ ûk+1

− uk+1;
if MatchRatio == 1 then

M ← M + 1 (M: count of ‘‘MatchRatio == 1")
end

end
Output: Deformation displacement fields from image fn to fn+t :

locally solved displacement u and final global,
kinematically compatible û

occur when part of the sample moves out of the field of view,
or due to experimental noise or occlusion. The existence of ghost
particles has a two-fold effect on the local topology-based match-
ing: the descriptor built in one frame for a ghost particle will not
have a corresponding correct match in the second frame, and the
feature descriptor of particles adjacent to the ghost particle will
be degenerate as they will lack that particle in the subsequent
frame. Both phenomena can have a deleterious effect on the
accuracy of the particle linking and tracking steps. Therefore after
solving each global ADMM iteration step of Eq (B.3), we attempt
to detect and remove ghost particles and re-collect the centroid
locations of correctly detected particles in both frames using the
following criteria:

Pn ←
⋃
Pn

{(
min

Pn+t∈Pn+t
|Pn − Pn+t (û)|

)
< εd

}
,

Pn+t ←
⋃{(

min
Pn∈Pn
|Pn − Pn+t (û)|

)
< εd

}
,

(1)
Pn+t

4
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w
here Pn stores all the coordinates of the detected particles in
frame n; û is the current, solved displacement field after the
ADMM global step; Pn+t (û) represents all the coordinates of the
detected particles in frame n+ t , which are further warped with
displacement (−û); εd is a user specified critical distance for a
detected particle in one frame (i.e., frame n) to be diagnosed as
a ‘‘ghost particle’’ if there does not exist any particle in the other
comparing frame (frame n + t) within εd. All the detected ghost
particles will be removed and remaining particles will form the
updated particle collections Pn and Pn+t for frame n and frame
n+ t , respectively.

2.3.3. Tracking cumulative displacements
Two strategies are provided by the SerialTrack algorithm to

reconstruct total, cumulative displacements at each step in an
image sequence — namely both cumulative and incremental
modes of tracking. In the cumulative mode, subsequent frames
are always compared to the undeformed reference (first) frame,
through which cumulative displacement fields can be obtained
directly. For large deformations, we employ the tracked results
from the previous frames and leverage a machine learning method
to estimate a displacement predictor to further improve the
tracking accuracy within subsequent frames [57]. In the incre-
mental mode, each frame is compared to its subsequent frame.
The tracked incremental displacement trajectory segments from
each image pair in the sequence can then be merged to com-
pute the final cumulative displacements at each time step (see
Section 2.4 for more details).

2.3.4. Effect of particle shape distortion
We optionally consider the effect of particle shape distortion,

e.g., for painted circular speckle dots on a 2D sample surface
that deform into ellipses during a uniaxial compression/tension
test, which can degrade the particle detection ability and thus
decrease the overall tracking accuracy. Distinguishing it from
Algorithm 1 where particles are defined as ‘‘hard’’, i.e., their shape
is assumed to be non-deforming or rigid, we call these particles
‘‘soft’’ and assume their shape deformations follow their local,
underlying material deformation gradients. A modified algorithm
to better track these distorted particles is summarized in Algo-
rithm 2. Different from tracking ‘‘hard’’ particles, in the ‘‘soft’’
particle tracking algorithm, particle centroid locations need to be
re-detected using the actual, warped images during the ADMM
iterations (see Step 4 in Algorithm 2).

2.4. Software functionalities: Post-processing

After all particles have been tracked, we provide post-processing
functions to interpolate the tracked displacement fields onto a
regularly spaced mesh to calculate deformation gradients and
strain fields [4]. In the incremental tracking mode, the direct,
tracked displacement field for each frame is in its current de-
formed configuration, or in an Eulerian coordinate frame [58].
Alternatively, we also include post-processing to determine in-
dividual particle trajectories throughout the image sequence in
a Lagrangian coordinate frame. Particles are linked and all the
displacement trajectories are merged [17,40] to obtain total par-
ticle displacements at each frame for each identified particle. To
further improve the cumulative tracking ratios, all the tracked
incremental displacement trajectory segments are extrapolated
both before the segment’s starting time point and after the seg-
ment’s ending time point. Then we find and join trajectory seg-
ments at corresponding time points that are likely from the
same particles, which can be merged together. We perform this
‘‘extrapolation and finding’’ scheme three to five times or until
we have successfully merged all trajectory segments.

Algorithm 2: Outline of the ‘‘soft’’ particle tracking procedure

Input: Two consecutive images fn and fn+t
Step 1: Detect particles in reference image fn;
Step 2: (Optional) Predict a displacement predictor;
Step 3: Set dual variable θ to be zero. Set IterNum = 1, and M = 0;
while

⏐⏐ûk+1
− ûk

⏐⏐ > ε and IterNum < IterMax and M < 5 do
Step 4: Warp image fn+t with current displacement ûk and
detect particles in images fn+t ;

%%%%% Subproblem 1: fix ûk and solve uk+1 locally %%%%%;
Step 5: Build a topology-based, scale and rotation invariant
feature for each particle;

Step 6: Match particle features and calculate MatchRatio;
%%%%% Subproblem 2: fix uk+1 and solve ûk+1 globally %%%%%;
Step 7: Solve Eq. (B.3) for ûk+1;

Step 8: (Optional) Remove ghost particles using Eq. (1);
Step 9: Update dual variable: θk+1

← θk
+ ûk+1

− uk+1;
if MatchRatio == 1 then

M ← M + 1 (M: count of ‘‘MatchRatio == 1")
end

end
Output: Deformation displacement fields from image fn to fn+t :

locally solved displacement u and final global,
kinematically compatible û

3. Illustrative examples

We assess the SerialTrack method with both synthetic and
experimental data sets at various particle seeding densities, as
shown in Figs. 3–6. Although the synthetic image generation
model may not capture all noise and error sources present in
experimental images, it serves as a verification and validation
for the algorithm where direct, quantitative error measurements
can be made between tracking results and ground truth data.
Several experimental test cases demonstrate the applicability of
this technique for permutations of seeding density and dimen-
sionality, and for both fluid and solid materials. All the used code
parameters are summarized in Table 3. A permanent copy of the
datasets for the examples can be found on the MINDS@UW open
access institutional data repository.1

3.1. Synthetic examples

For both 2D and 3D synthetic test cases, we generate synthetic
images with bead patterns following the steps described in Ap-
pendix C, and their quantitative evaluation results in Fig. 3 are
shown using tracking ratios and root-mean-squared displacement
error. As a baseline, we applied a small first-order motion field in
the form of rigid body translation in the x-direction from 0 pixels
to 4 pixels in 0.1 pixel increments using cumulative tracking.
The typical tracking ratios in the 2D and 3D rigid translation
are above 95% of particles tracked and 85% of particles tracked,
respectively. Displacement root mean square (RMS) errors were
computed on the measured centroid locations of each Lagrangian-
tracked particle on the order of 10−2 pixels. This error level is
comparable to the particle localization uncertainty [47,48]. The
deformation gradient tensor, F, of any homogeneous deformation
follows the multiplicative decomposition F = R ·U = V ·R where
U and V are the right and left stretch tensors and R is a pure
rotation of the polar decomposition. Therefore, we include test
cases for large, rigid body rotations (rotation angle θ from 0◦ to
180◦ in increments of 10◦), finite uniaxial stretches (stretch ratios
λ from 1 to 3 in increments of 0.1 and simple shear (shear angle γ

1 https://minds.wisconsin.edu/handle/1793/82901
5
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Table 3
SerialTrack code parameters for synthetic (‘‘syn’’) and experimental (‘‘exp’’) test cases.
Illustrative
examples

Syn or Exp Fig. Dim. Particle
rigidity

Tracking
mode

Bead intensity
threshold

Bead radius
(px)

Max
neighbor#

Size of search
field

Translation Syn 3a 2D Hard inc 0.5 3 25 Inf
Rotation Syn 3b 2D Hard inc 0.5 3 25 Inf
Uniaxial stretch Syn 3c 2D Hard accum 0.5 3 25 50
Simple shear Syn 3d 2D Hard accum 0.5 3 25 50
Translation Syn 3e 3D Hard inc 0.5 3 25 Inf
Rotation Syn 3f 3D Hard inc 0.5 3 25 Inf
Uniaxial stretch Syn 3g 3D Hard accum 0.5 3 25 50
Simple shear Syn 3h 3D Hard accum 0.5 3 25 50
DIC Challenge v2 Syn 3i-j 2D Hard inc 0.5 3 25 50
Uniaxial stretch Syn S3c 2D Soft accum 0.5 3 25 50
Simple shear Syn S3d 2D Soft accum 0.5 3 25 50
Inertial cavitation Exp 4a 2D Hard inc 0.5 2 10 30
Pipe flow Exp 4b 2D Hard inc 0.4 2 25 50
Foam compression Exp 5 2D Soft accum 0.5 3 25 50
Hydrogel shear Exp 6a 3D Hard inc 0.1 20 5 700
Gel indentation Exp 6b 3D Hard inc 0.1 3 25 50

from 0◦ to 45◦ in tan(γ ) increments of 0.05), as shown in Fig. 3(b–
d) for 2D cases and (f–h) for 3D cases. Particle seeding densities
(SD) range from 0.003 particles per pixel to 0.012 particles per
pixel in the synthetic 2D cases, and 10−4 particles per voxel to
10−3 particles per voxel in the synthetic 3D cases. PTV methods
based on an underlying rectilinear grid (typical for image-based
measurements) are often challenged by large rotation angles.
For large stretches and shear deformations where motions are
greater than the inter-particle spacing, local algorithms, such
as kNN or relaxation methods, suffer from non-uniqueness of
particle identification leading to poor tracking ratios [27]. In the
SerialTrack method, the region-based formulation is designed to
minimize these effects and is hybridized with a global optimiza-
tion strategy that ensures uniqueness and kinematic admissibility
of the reconstructed motion field, and thus the tracking ratios
remain high and the RMS displacement errors are typically be-
low O(0.1) px. In all cases, the tracking ratio decrease in part
reflects that particles are moving out of the field of view in our
referential Eulerian frame. This is most clearly illustrated in the
rotational case, where the lowest tracking ratios correspond to
approximately 45◦ rotation, where the overlap between reference
and deformed configuration frame is likewise at a minimum. For
a summary of the overall detection ratio and strain RMS error,
see SI Fig. S1 and Fig. S2 for the synthetic 2D and 3D results,
respectively. Our typical particle tracking applications use rigid
particles, however, deformable or modulus-matched particles can
be important to preserve the verisimilitude of the instrumented
test. The method, therefore, also optionally accounts for particle
shape distortions. A similar summary of the tracking results for
this subclass of reconstructions is given in SI Fig. S3.

Inspired by Reu et al. [59], we designed a synthetic 2D example
to test the spatial resolution of the SerialTrack algorithm using a
‘‘star’’ pattern displacement field. Both reference and deformed
images are 4001pixels × 501pixels. The vertical displacement
has a varying spatial period, λ, from 10pixels at x = 1pixels,
to 300pixels at x = 4001pixels according to Eq (2). The spatial
period of the vertical sine wave in the assigned displacement
field is proportional to the image position across the width of the
image. The magnitude of the periodic vertical displacements is
±2 pixels. The ground truth of horizontal displacement is zero.
We test different bead seeding densities (SD) of (0.003, 0.006, and
0.012) beads per pixel. No additional noise is added during the
image generation.

λ = 10+
300− 10
4001

(x− 1) (2)

Both SerialTrack tracked horizontal and vertical displacement
fields are summarized in Fig. 3(i). Vertical displacements re-
trieved along the center row (y = 251 pixels) are further sum-
arized in Fig. 3(j). The ground truth of the vertical displacement

at y = 251pixels is 2 pixels. First, we find that SerialTrack
can resolve heterogeneous deformations well. Particularly, using
dense particles where SD > 0.006 particles per pixel, the algo-
rithm can accurately recover the low frequency, large amplitude
deformation fields when x > 500pixels, where the wave length
is greater than 46pixels. We also find that the tracked vertical
displacement for the very high frequency deformations on the
left hand side are underestimated. This is not surprising, because
with a topology-based particle tracking approach it is challeng-
ing to resolve heterogeneous deformation whose characteristic
wavelength (λ) is smaller than half of the averaged nearest-
neighbor-particle distance ∼ O(SD−1/2). Compared with other
subset-based correlation methods [59], the SerialTrack method is
not only able to solve dense particles but also sparse particles.
Additionally, it can be computationally cheaper, with a poten-
tial computational cost reduction on the order of (# of image
pixels) / (# of particles).

3.2. Experimental examples

With the synthetic deformation cases showing strong perfor-
mance across a range of deformation modes and particle densities
in both 2D and 3D, we move to a variety of experimental test
cases. Test cases are conducted in both 2D and 3D, with sparse
and dense particles, and are summarized in Figs. 4–6. Addition-
ally, a 2D large deformation uniaxial compression experiment
is employed to demonstrate the ‘‘soft particle’’ implementation
in Section 3.2.2 where the ink-printed circular dots undergo
significant shape distortion.

3.2.1. 2D ‘‘hard’’ particle examples
Fig. 4a shows an example of sparse 2D particle tracking in

a laser-induced cavitation event in a soft material specimen.
Following McGhee et al. [60], 15 µm polystyrene particles are
embedded into a single, flat plane within the bulk of a gelatin
hydrogel. Then the sample is placed into the optical path of a
laser-based cavitation system [61,62]. A 6ns laser pulse is steered
through the backport of an inverted microscope and focused via a
20× magnification, 0.5 numerical aperture (NA) (i.e., 20×/0.5NA)
imaging objective onto the imaging plane to induce a cavitation
bubble on the same plane as the embedded particles. Fig. 4a(i)
shows the resulting bubble radius vs. time curve with call-outs
for specific frames of interest denoted by a blue star, red dia-
mond, and yellow circle which correspond to the time points
of bubble expansion, maximum bubble radius, and nearing the
first collapse, respectively. Two images of a typical cavitation
event are shown in Fig. 4a(ii). By tracking the 2D motion of the
embedded sparsely distributed particles in this image sequence,
6
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Fig. 3. The overall ratio of successfully tracked particles to total detected particles as a function of increasing applied motion, i.e., image step, and the displacement
RMS error at each step for synthetic 2D (top row) & 3D (middle row) homogeneous deformations for the proposed SerialTrack method. (SD: seeding density). A
synthetic 2D example using a ‘‘star" pattern heterogeneous displacement field is shown at the bottom row. (a,e)Unidirectional translations in the x-direction from
0pixels (or voxels) to 4pixels (or voxels). (b,f) Rigid body rotation about the z-axis with rotation angles from 0◦ to 180◦ . (c,g)Uniaxial stretch in the x-direction with
stretch ratios from 1 to 3. (d,h) Simple xy- and xz-shear with shear angles from 0◦ to 45◦ . (i) Tracked x and y displacement fields in the synthetic ‘‘star" pattern
heterogeneous field and their vertical displacements retrieved along the center row are further summarized in (j).

we can reconstruct the evolution of the resulting time-resolved
velocity fields. For example, the radial velocity vs. radial distance
curves are computed and plotted in Fig. 4a(iii). Velocity fields at
the marked expansion (blue star) and collapse (yellow circle) time
points in Fig. 4a(i) are summarized in Fig. 4a(iv).

As an example of a densely populated, 2D particle tracking
scenario, we examine a case where the data originates from
high-speed PIV measurements of flow in a tube [40] as shown
in Fig. 4b(i). We use the same Laplacian of Gaussian image
filtering technique as described [40] to detect single particles (see
Fig. 4b:ii–iii). We tested both the incremental and cumulative
modes (see Fig. 4(b:v–vii)). In the cumulative mode, we directly
track the total, cumulative displacement of each individual par-
ticle. In the incremental mode, the cumulative displacements
are computed by merging trajectory segments (refer to Sec-
tion 2.4). The final cumulative tracking ratio is given in each case
in Fig. 4(b:iv). The reconstructed cumulative displacement fields

for the first and ninth frames are visualized in Fig. 4(b:viii–ix),
where the cumulative displacement in the ninth frame is large
but still well-tracked by SerialTrack.

3.2.2. 2D ‘‘soft’’ particle tracking example
Here we apply our SerialTrack code to a large deformation,

uniaxial compression experiment on an open-cell polyurethane
foam sample with a nominal density of 240kg/m3. The dimen-
sions of the foam specimen were approximately 12.7 mm ×
12.7 mm × 12.7 mm. The experimental setup and other experi-
mental details can be found in Yang et al. [63]. The reference and
deformed images at compression ratios of 7.3%, 16.6%, 25.9%, and
37.4% are shown in Fig. 5a, with magnified insets shown in Fig. 5b.
Three dashed-line ellipses and three rectangles are marked to
highlight the same locations on the front surface of the testing
specimen that underwent large deformations.

As described in Algorithm 2, deformed images are iteratively
warped, and single particles are detected during each ADMM
7
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Fig. 4. 2D, ‘‘hard’’ particle tracking experimental examples. (a) Tracking laser-induced inertial cavitation in a soft material with sparsely seeded particles [60].
(a:i) Experimentally measured bubble radius vs. time curve. Three specific frames of interest are denoted by a blue star, red diamond, and yellow circle, which
corresponds to the time points of bubble expansion, maximum bubble radius, and nearing the first collapse point, respectively. (a:ii) Raw high-speed camera frames
at the blue star and red diamond time points. (a:iii) Reconstructed radial velocity vs. radial distance curves at the three marked time points in (a:i). (a:iv) Reconstructed
velocity fields at the blue star and yellow circle time points. (b) 2D particle tracking example of flow through a bent pipe using densely seeded particles [40]. (b:i) One
typical frame in the time-resolved image sequence. (b:ii-iii) Detected single particle centroids using the Laplacian of Gaussian filtering technique are circled in red.
(b:iv) Particle tracking ratios. (b:v-vii) Tracked trajectories. (b:viii-ix) Tracked cumulative displacement fields for the first and ninth frames.

iteration. Here we present the final warped images in Fig. 5c.
The corresponding detected particle centroids are marked by
red dots and shown under magnification in Fig. 5d. The final
tracked cumulative displacements are visualized via cone plots
and summarized in Fig. 5e.

3.2.3. 3D examples
As a sparsely seeded, 3D tracking example case, inspired by

iological applications such as traumatic brain injury [64,65],
e seeded 5 µm fluorescent microparticles at a 1.5% vol/vol

raction in a soft polyacrylamide hydrogel and deformed the
ydrogel in a simple-shear-like mode on a confocal laser point
canning microscope using a 20×/0.5NA (approximately 1 µm
oxel size) imaging objective. The shear deformation was im-
osed quasi-statically (1minute per step) in 10 steps in nominally
% engineering shear strain increments from 0% strain to 40%
train, and a total of O(100) particles were tracked as shown in
ig. 6a(i) where the artificial color of the particles depends on the
-coordinate. Results, including the particle tracking ratios, nom-
nal crosshead, and reconstructed deformation gradient tensor
omponents, are shown in Fig. 6a(ii,iii). In addition, note that the
inal cumulative tracking ratio obtained by merging incrementally

tracked trajectory segments is higher than the direct cumulative
mode (see Fig. 6a(ii)).

We also test our SerialTrack method for tracking densely
seeded particles in 3D. In this experiment, a 1 mm diameter stain-
less steel sphere with a density of 7750kg/m3 was placed onto
the surface of a submerged soft polyacrylamide (PA) hydrogel to
perform spherical indentation under the force of gravity (g), as
shown in Fig. 6b(i-ii). 3D volumetric image stacks (image size:
1024 voxels × 1024voxels × 445voxels) containing fluorescent
beads were scanned before and after the indentation deformation
near the hydrogel surface using multiphoton microscopy and a
25×/1.15NA water immersion objective [56]. All other experi-
mental parameters can be found in [56]. Three-dimensional cone
plot and the xz-plane projection of the tracked 3D deformation
field are shown in Fig. 6b(iii) and (iv), respectively.

4. Impact and conclusions

Particle tracking, often called single particle tracking (SPT) or
particle tracking velocimetry (PTV), is a widely used methodology
for quantitative, full-field analysis of dynamic processes, typically
from time-lapse image data. SPT methods operate by detecting
and tracking individual tracer particles or fiducial markers during
8
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c
t

Fig. 5. Demonstration of the ‘‘soft’’ particle tracking (Algorithm 2) via a large deformation uniaxial compression experiment. (a) Experimental reference and selected
deformed images where regions of interest (ROIs) are marked using dashed line rectangular boxes. Insets are magnified and shown in (b) where three ellipses and
three rectangles are marked to highlight the same locations on the surface of the specimen that underwent large deformations, respectively. During the ‘‘soft’’ particle
tracking process, deformed images are iteratively warped, and particles are detected as shown in (c-d). Final tracked cumulative displacement field cone plots are
summarized in (e).

a time-resolved image sequence. Here we present a new hy-
brid local–global tracking algorithm that builds an iterative scale
and rotation invariant topology-based feature vector for each
particle within a multi-scale tracking process, where the global
kinematic compatibility of the final tracked displacement field is
optimized. SerialTrack is able to track particles in both 2D and 3D
images with both sparse and dense particle seeding densities. It
can accurately reconstruct large, finite deformation and complex
velocity fields. We also consider the effect of shape distortion
on the embedded particles due to presence of local, material
deformation gradients. We used synthetic examples to verify and
validate the implementation of SerialTrack, and provide an esti-
mate of the spatial resolution capabilities. We then demonstrate
the performance and post-processing routines on a variety of
experimental test cases including 2D and 3D examples featur-
ing sparsely and densely populated, soft and hard particles. Of
final note, the current implementation of SerialTrack assumes the
overall deformation field to be continuous (see Eq. (A.4)). How-
ever, the proposed optimization problem can be further modified
to consider discontinuous deformations [57], which will be added
to future versions of the code. The provided open-source code
package implements the proposed SerialTrack method and allows
users to apply the code directly to their own research.
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Appendix A. Particle tracking problem formulation

We assume that each image is in a sequence of images from
the 0th (reference configuration) to Nth (final, fully deformed)
configuration, where each image is defined by a grayscale inten-
sity field fn(x), consisting of multiple superposed intensity sources
(N , e.g., from fluorescent particles) in the image domain as:

fn(x) =
∑
P∈Pn

N
(
x; A(P) exp

(
−
|x− P|2

2σ (P)2

)
I
)

, (A.1)

where x denotes each image pixel; P is the coordinate of each
individual particle centroid; A is the maximum particle intensity
with σ (P) the standard deviation of intensity decay for each
particle; I is an identity matrix. Pn is the collection of all particles
in image f , C(n) is the total number of particles in image f , and
n n

9
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i
a

Fig. 6. Tracking 3D deformations. (a) A 3D shear example (du/dz ̸=0, dv/dz
̸=0) with sparsely distributed particles. (a:i) The shear deformation was imposed
quasi-statically on the hydrogel sample. All detected particles are color-
coded depending on the z-coordinate of their centroids. (a:ii) Tracking ratios.
(a:iii) Reconstructed deformation gradients, which agree well with the nominal
crosshead motion (coded as ‘‘exp’’). (b) A 3D spherical indentation example
where particles are densely seeded. (b:i–ii) Sketch of the reference and deformed
configurations of the spherical indentation experiment (not to scale). (b:iii–iv)
3D cone plot and the xz-plane projection of the tracked 3D deformation.

we define the operator E as the particle detection process that
extracts the centroid position (Pi) of each particle such that

Pn =
{
P0, P1, . . . ,PC(n)

}
:= E(fn(x)) (A.2)

The subsequent particle linking process solves for the unknown
displacement field ui from image n in the sequence to a later
mage n+ t in the sequence. For incremental mode we set t ≜ 1,
nd for cumulative mode n ≜ 0 and t ∈ N , where t is in general

a positive integer number of image frames. The linking process
solution minimizes a cost function, for example, in a simple case
the sum of squared differences,

min
ui

∫
x
|E(fn(x))− E(fn+t (x− ui))|2 dx (A.3)

However, the above optimization problem is ill-posed. In general,
the cost function is not convex and the solution is not unique,
since the matching of particles Pn to Pn+t has no guarantee
of uniqueness and in practices mismatches and non-matching
particle links frequently exist. To reduce displacement noise in-
troduced by mis-linked particles, global regularization penalties
are further added to the optimization cost function. This op-
timization problem can be efficiently solved by the alternating

direction method of multipliers (ADMM) after adding a global slack
variable, ûi. The modified optimization problem is:

min
ui

∫
x
|E(fn(x))− E(fn+t (x− ui))|2 +

α

2

⏐⏐∇ûi
⏐⏐2
F dx,

subject to ui = ûi

(A.4)

where the coefficient α is a positive weight of the added reg-
ularizer and | · |F is the Frobenius norm for tensors such that
|A|2F :=

∑
i
∑

j |Aij|
2. The first term in (A.4) is the displacement

from particle matches using the local linking algorithm informa-
tion, which can be solved quickly and in parallel as discussed in
Sect 2.3.1 for our implementation. The second term in Eq (A.4)
penalizes global displacement variance and noise. Other global
regularization schemes can also be applied if there is additional,
a priori known information about the physics of the problem. The
combined local and global optimization solution is implemented
in an iterative fashion, such that local particle matching is in-
formed by the globally refined displacement field to yield a final
unique and kinematically admissible displacement field ui with
local accuracy and resolution from individually tracked centroid
locations.

In the current algorithm, we only consider continuous de-
formation cases where certain regularity and smoothness are
assumed as prior information (see Eq (A.4)). However, the pro-
posed optimization problem can be further modified to consider
discontinuous deformations, e.g., [57], or by enforcing alternative
partial differential equations (e.g., a Naiver–Stokes-based global
form), which is a potential future work direction

Appendix B. Alternating direction method of multipliers

To efficiently solve the optimization problem posed in Eq. (A.4),
it can be rewritten for a given displacement step u in ADMM form
as [66]:

L(u, û, θ) =
∫
x
|E(fn(x))− E(fn+t (x− u))|2

+
α

2

⏐⏐∇û⏐⏐2 + µ

2

⏐⏐û− u+ θ
⏐⏐2 dx (B.1)

where µ is a positive coefficient of the added augmented La-
grangian penalty and θ is an introduced dual variable. During
each ADMM iteration step, we first decompose the global mini-
mization problem Eq. (B.1) into independent, local problems (see
Sect 2.3.1), then all the local solutions, u, are projected onto a
global, kinematically compatible space where the global auxiliary
displacement field û is admissible. Mathematically, given the
results {uk

i }, {û
k
i }, {θ

k
i } in the kth step, we solve the (k+1)th update

using the following steps:

• Subproblem 1: Local update. While holding {ûk
i } and {θ

k
i } fixed,

we minimize Eq. (B.1) over {ui} to obtain {uk+1
i }. Since {û} is fixed

and µ can be a small value, this problem is broken down into a
series of local problems that can be solved independently using
local topology-based feature matching to obtain a displacement
guess:

uk+1
:= arg min

u
L(u, ûk, θk) (B.2)

• Subproblem 2: Global update. While holding {uk
i } and {θ

k
i }

fixed, we minimize L over {û} such that

ûk+1
:= arg min

û
L(uk+1, û, θk) (B.3)

This is a global problem, but is independent of the original im-
age sequence f since it only relies on the displacements com-
puted from the local particle linking step. Indeed, it leads to a
10
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ell-posed linear problem:

−
α

µ
∇ · ∇ + I

)
û = uk+1

− θk (B.4)

Subproblem 3: Dual variable update. We finally update the
ual variable {θ} as follows:
k+1
:= θk

+ ûk+1
− uk+1. (B.5)

In practice, the smoothing parameter α is carefully chosen in
he range α/µ = O(10−3) ∼ O(10−1) based on the expected
smoothness of the deformation field. The parameter α/µ can be
further tuned using the L-curve method [67].

Appendix C. Synthetic image generation

In each reference image, isolated spherical beads are randomly
seeded using a 2D or 3D Gaussian intensity profile as an approx-
imation of a random, isotropic image pattern. A typical Gaussian
point spread function (PSF) with amplitude A and spread σ and
ocated at x is expressed as

SF(x) = Aexp

(
−

d∑
i=1

x2i
2σ 2

)
I (C.1)

here d is the image dimensionality and xi is the ith-component
of x; I is the identity tensor. We choose σ = 1 to approximate
circular/spherical particle in the volume image with a diameter
f approximately 5 pixels or voxels. All the beads are sampled
andomly with seeding density SD which denotes the number of
articles per pixel or voxel. To avoid particles overlapping in the
ynthetic images, a Poisson disc sampling algorithm is used to
eed center-point locations with a minimum separation distance
etween particles equal to the particle diameter [27]. The particle
ositions in the deformed images are calculated via the imposed
isplacement field and grayscale values are interpolated into the
mage. In addition, 5% white Gaussian noise has been added to the
ynthetic images to roughly approximate the experimental noise
n our images.

ppendix D. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.softx.2022.101204.
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