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Coordinated laboratory experiments and computational simulations are conducted that
explore the collective vertical migration of a swarm of inertial swimmers through a stably
stratified density interface. Values of the governing parameters such as the swimmer- and
swarm-scale Reynolds numbers, the Richardson number, as well as the animal number
density in the swarm closely match each other in the simulations and experiments.
In addition to intense mixing at the swimmer scale, the experiments and simulations
demonstrate that the hydrodynamic interaction of the individual swimmers produces a
spatially coherent source of thrust that results in the formation of a swarm-scale jet in
the direction opposite to the migration. The jet velocity is seen to increase monotonically
with the animal number density, at a sublinear rate. For steadily moving dilute swarms, the
jet velocity is well predicted by a simple analytical model that assumes spatially uniform
jet and swimmer velocities. Experimental measurements demonstrate effective diffusivity
values up to three orders of magnitude larger than the molecular value. Numerical results
are consistent with these observations, although they employ a larger molecular diffusivity
and, hence, yield a lower ratio. The effective diffusivity is seen to increase linearly with
the volume fraction of the swimmers. A continuum model is proposed for the generation
of the swarm-scale jet, based on an idealization of the swarm as a self-propelled porous
sphere. This model suggests that large swarms generate most of their mixing through the
coherent swarm-scale jet, rather than by processes at the scale of individual swimmers.

Key words: micro-organism dynamics, mixing and dispersion, particle/fluid flow

1. Introduction

In recent years a picture has begun to emerge of the ways in which biologically
generated turbulence could contribute to oceanic transport and mixing (Huntley & Zhou
2004; Dewar et al. 2006; Katija & Dabiri 2009; Dabiri 2010). In particular, it has been
suggested that swarms of self-propelled organisms, such as copepods and zooplankton,
may significantly modify the properties of the water column in marine ecosystems
(Wilhelmus & Dabiri 2014; Houghton et al. 2018). In support of this idea, the collective
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upward migration of centimetre-scale swimmers in stably stratified salt water has been
shown to generate a downward jet that triggers substantial mixing at the swarm scale,
resulting in effective diffusivities up to three orders of magnitude larger than the molecular
diffusivity (Houghton et al. 2018).

The motion of self-propelled organisms in the Stokes regime has been explored in some
detail both theoretically and computationally, as surveyed in the comprehensive review by
Pak & Lauga (2014). In comparison, swimming at moderate Reynolds numbers, where
inertia plays a significant role, has received far less attention to date (Wang & Ardekani
2012), due to the modelling challenges and computational cost associated with resolving
the details of the animal-fluid interaction in this parameter regime. Large zooplankton
such as copepods that straddle the boundary between inertial and viscous-dominated
flows are particularly relevant with regard to biologically induced mixing, since these
millimetre- to centimetre-scale swimmers account for the majority of living organisms in
the mesopelagic and aphotic zone (Visser 2007). Hence, there exists a strong motivation to
develop accurate computational modelling approaches for analysing their collective action,
along with the resulting fluid motion (Wang & Ardekani 2012).

A popular model for self-propelled swimmers in the Stokes regime was introduced by
Lighthill, and corrected by Blake (Lighthill 1952; Blake 1971). This so-called squirmer
model replaces the individual motion of the cilia around a spherical swimmer by a wave
envelope, and it evaluates the resulting incompressible axisymmetric flow. It has been
used extensively in studying the motion of submillimetre-scale organisms in viscous
flows (Magar & Pedley 2005; Ishikawa, Simmonds & Pedley 2006; Lauga & Powers
2009). More recently, this model has been extended to finite Reynolds number flows
in order to analyse swimming regimes that are inaccessible to fully resolved numerical
simulations of the interaction between flexible appendages and the surrounding fluid
(Doostmohammadi, Stocker & Ardekani 2012; Wang & Ardekani 2012; Khair & Chisholm
2014; Wang & Ardekani 2015; Ardekani, Doostmohammadi & Desai 2017). The squirmer
model represents an excellent candidate for numerical investigations of biogenic mixing,
as it enables the analysis of hydrodynamically interacting swimmers and their collective
contribution to the large-scale fluid motion. To that end, Li & Ardekani (2014), Wang &
Ardekani (2015) and Li, Ostace & Ardekani (2016) employed a distributed Lagrangian
multiplier approach that approximately imposes the surface velocity of the swimmer
within its interior. Based on this technique, Wang & Ardekani (2015) analysed groups of
up to eight swimmers at moderate Reynolds numbers in linearly stratified environments,
along with the resulting mixing efficiency, effective diapycnal diffusivity and other
statistical properties. In addition, the authors assessed the combined effects of background
decaying isotropic turbulence and swimming on those quantities. They reported enhanced
diapycnal mixing and increased mixing efficiency for swimmers in the inertial regime for
Re ≤ 10.

Following a similar modelling approach, the present investigation analyses biogenic
transport and mixing processes generated by the migration of swarms of up to 373
self-propelled organisms. It specifically focuses on identifying the differences between
the mechanisms that govern mixing at the swimmer and swarm scales. The present
study builds on the work of Houghton et al. (2018) by separating the within-swarm
contribution of swimmers to irreversible mixing from the large-scale mixing induced by
the swarm. Guided by accompanying laboratory observations, we employ a novel use of
the immersed boundary method (IBM) coupled with a volume of fluid (VoF) approach for
scalar transport, in order to simulate swarms of phototactic, hydrodynamically interacting
swimmers migrating through density-stratified interfacial regions. Towards this end, we
adapt the squirmer model so that the individual organisms can actively modify their
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Collective migration of active swimmers in stratified fluid 902 A23-3

swimming orientation in response to an external light source, much like Artemia salina
(Houghton et al. 2018). After reviewing the laboratory experiments in § 2 and the
simulation approach in § 3, we will explore the process of jet formation in § 4. The
swimmer- and swarm-scale mixing processes will be analysed as functions of the animal
number density in § 5. In addition, we will employ the insight gained from the discrete
swimmer simulations in order to develop a continuum model in § 6 that is capable of
capturing the generation of large-scale jets by the collective action of a swarm.

2. Experimental methods

Controllable vertical migrations were achieved in the laboratory utilizing the brine
shrimp A. salina, a zooplankton species approximately 1 cm in length. The experiments
leveraged the strong phototactic response of the animals to control their vertical motion in
laboratory tanks 1–2 m tall.

Two different experimental protocols were used to study the collective vertical
migrations, one to assess the flow field dependency on animal number density (Houghton
& Dabiri 2019) and one to measure irreversible mixing by the aggregation (Houghton et al.
2018).

2.1. Jet velocity experiments
Following methods in Houghton & Dabiri (2019), the fluid velocity induced by the
aggregation was assessed with simultaneous volumetric animal number density and
two-dimensional velocity measurements in a 0.5 m × 0.5 m × 1.2 m tall, well-mixed tank.

Lights were utilized to control the animal motion, with an LED array pointing upward
through the clear acrylic bottom of the tank and a single focused LED pointed vertically
downward from the top of the tank (figure 1). Another focused LED was pointed
horizontally just below the water surface intersecting the vertical beam in order to draw
the animals to the edge of the tank after they reached the surface. The lower LED array
was used to group the animals at the bottom of the tank initially, and the strong phototactic
response of the swimmers resulted in a steady upward migration following activation of the
upper LED and deactivation of the lower LED array (see supplementary movie available at
https://doi.org/10.1017/jfm.2020.618). Experimental studies focused solely on the upward
migrations.

Image analysis was used to measure the local animal number densities within the
aggregation by obtaining the animal count within the known illuminated volume created
by the focused LED. Local animal densities were of the same order of magnitude
as reported values for oceanic swarms, which range from 10 000–450 000 animals m−3

(Hamner et al. 1983; O’Brien 1988; Huntley & Zhou 2004). Estimates of the animal
swimming velocities were obtained using object centroid tracking and were averaged in
one second bins.

To measure the fluid velocity within the aggregation, the experimental tank was seeded
with 13 μm neutrally buoyant glass beads and illuminated with a two-dimensional red
laser sheet. Pairs of subsequent frames (ΔT = 0.04 s) were used to conduct particle image
velocimetry (PIV) using PIVLab (Thielicke & Stamhuis 2014). Vertical and horizontal
velocities within the two-dimensional slice through the centre of the aggregation were
obtained using a multi-pass method with two iterations and a decreasing window size
from 64 × 64 pixels to 32 × 32 pixels and a 50 % overlap. Animals were masked out prior
to processing, with the identical mask applied to the pair of processed images.
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Focused LED Focused LED

1.2 m

0.5 m 0.5 m

A. salina

A. salina

1.2 m

LED
array

LED
array

(a) (b)

FIGURE 1. Experimental set-up to measure jet velocity: (a) animals grouped at the bottom
initially; (b) animals drawn to the surface, and then to the side, with a focused LED from above.
A two-dimensional red laser sheet illuminates particles seeded in the flow.

For full experimental details, including complete experimental tank conditions and
image analysis methods, see Houghton & Dabiri (2019).

2.2. Density-stratified experiments
Two experimental set-ups are presented in a density-stratified environment, one focused
on transient dynamics in a linear stratification and one measuring irreversible mixing
in a two-layer stratification. Transient dynamics within a linearly salt-stratified water
column were studied in a 0.9 m × 0.9 m × 2 m tall tank, with a buoyancy frequency of
N = 0.05 s−1 to assess the importance of a restratifying force. Repeated control profiles
were taken over the course of an hour prior to starting an experiment, and changes
to the density stratification were negligible, indicating that thermal convection was not
affecting the flow. Density was measured using a temperature-salinity probe (see the
methods section of Houghton et al. 2018). A 1 W, 447 nm (blue) laser was used as the
light stimulus rather than focused LEDs for increased illumination intensity over a larger
height. Transient perturbations to the density stratification in the tank were measured as
the animals swam upward toward the light using a vertically traversing density probe
(Precision Measurement Engineering) located 5 cm horizontally from the centreline of the
migration. Following each migration and measurement of the perturbations, the animals
could be returned to the bottom of the tank by powering off the upper blue laser and
powering on a lower green laser.

Long-term impacts to the density profile (i.e. mixing) were measured in the 0.5 m ×
0.5 m × 1.2 m tank. Animals were introduced at a tank averaged value of 46 000 ±
5000 animals m−3 to 138 000 ± 5000 animals m−3. These experiments used a two-layer
stratification with buoyancy frequencies across the 0.2 m thick interface of N =
0.04–0.13 s−1. This corresponded to a salt concentration of 26.0 ppt in the upper mixed
layer and 26.1–26.5 ppt in the lower mixed layer for the range of stratification strengths
used. To simulate the passage of a swarm through a pycnocline, animal migrations were
repeatedly induced over 120 min, switching the LED light stimulus between the top
and bottom (upward and downward migration) every 10 min (figure 1). The long-term
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Collective migration of active swimmers in stratified fluid 902 A23-5

evolution of the initial two-layer stratification was measured with the same vertically
traversing probe located 20 cm laterally from the migration. Density profiles were obtained
every twenty minutes throughout a migration experiment, with repeated density profiles
obtained at the end of a 120 min experiment to confirm that the tank was fully settled and
horizontally homogeneous. For full density mixing experimental details, see Houghton
et al. (2018).

3. Simulation approach

We conduct direct numerical simulations of model swimmers reacting to a virtual light
source to generate a controlled vertical migration of a swarm similar to the one observed
in the experiments. The simulations are designed to fully capture the local hydrodynamic
interactions that lead to the large-scale spatial and temporal collective dynamics found
experimentally.

3.1. Governing equations
We employ the squirmer model introduced by Lighthill (1952) and adapted by Blake
(1971) for Stokes flows to represent the swimmers. The squirmer model replaces the
individual motion of numerous cilia around a spherical swimmer by a wave envelope
and then evaluates the corresponding incompressible axisymmetric Stokes flow around
the sphere. This model has been studied extensively and its usage has recently been
extended to inertial finite Reynolds number flows, both analytically (Wang & Ardekani
2012; Khair & Chisholm 2014) and numerically (Li & Ardekani 2014; Wang & Ardekani
2015; Chisholm et al. 2016; Li et al. 2016). The squirmer swimmer generates thrust by
imposing a radial and tangential velocity at the surface of the sphere such that, in polar
coordinates,

uρ(ρ = R, θ) =
∞∑

n=0

AnPn cos θ, (3.1)

uθ (ρ = R, θ) =
∞∑

n=1

2
n(n + 1)

Bn sin θP′
n cos θ, (3.2)

where θ is the polar angle to the swimming direction, R is the radius of the sphere, An

and Bn are the nth mode of the radial and tangential squirming velocity components, and
Pn and P′

n are the nth Legendre polynomial and its derivative, respectively. It is common
to consider a reduced-order model by neglecting the radial velocity and only retaining
the first two modes of the squirming motion, such that the surface velocity of a squirmer
reduces to a tangential component, as shown in figure 2 (Chisholm et al. 2016). In the
reference frame of the moving object, this tangential velocity is given by

uθ (ρ = R, θ) = B1 sin θ + B2 sin θ cos θ. (3.3)

The amplitude B1 of the first mode is responsible for propulsion, while that of the
second mode B2 accounts for the stress field generated by the swimmer (Blake 1971).
This reduced-order model for the squirmer, which only considers the first two modes, is
sufficient to explore a variety of swimming mechanisms that produce very different flow
patterns in the near and far field, in a wide range of inertial regimes (Chisholm et al.
2016). Physically, the first term on the right-hand side of (3.3) is solely responsible for
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y

es

eθ θ

p

r

x

z

FIGURE 2. Sketch of the squirmer swimmer. Here es defines the swimming direction, r is the
vector from the centre of the sphere to a point at its surface, where the tangential velocity
uθ is imposed in the direction of eθ , and θ denotes the angle between r and the swimming
direction es.

es es es

θ

β = –3 β = 0 β = 3
θ θ

Pusher Neutral Puller

FIGURE 3. Axisymmetric surface velocity vectors in the reference frame of the squirmer for a
pusher, neutral swimmer and puller.

propulsion. The second coefficient, B2, determines the intensity of the stresslet exerted by
the swimmer. In a Stokes flow, the terminal velocity U = 2

3 B1 reached by a single squirmer
is independent of B2. The ratio β = B2/B1 determines the squirming mode, i.e. how thrust
is generated by the squirmer. Squirmers with β > 0 are defined as pullers, while those
with β < 0 are pushers. A puller generates thrust by accelerating fluid backwards in front
of its body, while a pusher accomplishes the same by accelerating fluid behind its body, as
shown in figure 3. The resulting effect on the fluid velocity field and on the transport
of a diffusing scalar field varies with the magnitude of β and with the Reynolds and
Péclet numbers. Figure 4 illustrates the qualitative influence of the swimming mode on
the flow field and on the concentration contours of a passive scalar field for Re = 20 and
β = −3, 0, 3. At this Reynolds number the recirculation region typically present above
a pusher is quite thin. The streamline pattern associated with the neutral swimmer is
fairly symmetric, while the puller gives rise to a pronounced recirculation region in its
near wake. The velocity field corresponding to the swimming mode directly affects the
transport of a passive scalar. While a pusher tends to carry along resident fluid near its
front stagnation point, a puller drags along fluid in its near wake.

To simulate the flow field associated with a swarm of squirmers, we solve the
three-dimensional incompressible Navier–Stokes equations in the Boussinesq limit, in
conjunction with an advection-diffusion equation for the density field. In addition, the
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10.5
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9.5
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–1 0 1

–1–2 0 1 –1–2 0 1 –1–2 0 1

2 –1 0 1 2 –1 0 1 2

x x x

y

y

(a) (b) (c)

(d ) (e) ( f )

FIGURE 4. Axisymmetric flow due to an inertial squirmer swimming across a passive scalar
gradient at Re = 20 for β = −3 (a,d), β = 0 (b,e) and β = 3 (c, f ). The streamlines and velocity
magnitude field in the reference frame of the swimmers (a–c), along with the concentration field
and contour lines (d–f ), illustrate the differences among the swimming modes.

conservation equations of linear and angular momentum are solved for each squirmer.
We account for the effect of the squirmers on the fluid via the IBM (Mittal & Iaccarino
2005; Biegert, Vowinckel & Meiburg 2017). This approach adds a forcing term f to the
momentum equation in order to enforce boundary condition (3.3) at the surface of the
squirmer. The dimensional governing equations for the fluid motion and scalar transport
in conservative form hence take the form

∇ · u = 0, (3.4)

∂u
∂t

+ ∇ · (uu) = − 1
ρf

∇p + νΔu + ξf (x)cαg + f , (3.5)

∂c
∂t

+ ∇ · (
ûc

) = ∇(κ∇c), (3.6)

where u represents the fluid velocity in Cartesian coordinates, p indicates the pressure
and ν is the constant kinematic viscosity. As a reference density ρf , we choose the value
1000 kg m−3, and α denotes the expansion coefficient associated with the concentration
field c. The gravity term of (3.5) was derived by assuming a linear relationship between
the local density and the scalar concentration

ρ = ρf (1 + αc). (3.7)

Here κ represents the scalar diffusivity, and û is the compound velocity defined as the fluid
velocity inside the fluid domain and the particle velocity within each particle, i.e. the solid
body motion of the rotating and translating swimmer (see appendix A). This ensures that

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

al
te

ch
 L

ib
ra

ry
, o

n 
15

 S
ep

 2
02

0 
at

 1
9:

13
:2

3,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

61
8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.618


902 A23-8 R. Ouillon, I. A. Houghton, J. O. Dabiri and E. Meiburg

there is no advective transport of concentration within the sphere due to the IBM solution
to the fluid equations. Here ξ f (x) denotes the indicator function of the fluid phase,

ξf (x) =
{

1 if x ∈ Ωf ,

0 if x ∈ Ωp,
(3.8)

where Ωf and Ωp indicate the volumes occupied by the fluid and particle phases,
respectively. The governing equations are solved inside the numerical domain Ω =
Ωf

⋃
Ωp = [0, Lx ] × [0, Ly] × [0, Lz] with edge lengths Lx , Ly, Ly , where x and z denote

the horizontal directions and y points in the upward vertical direction of swimming.
In order to track the concentration field as it is convected and diffused within the fluid,

without crossing into the swimmers, we employ the VoF approach (Ardekani et al. 2018).
Within this VoF framework, the diffusivity κ takes the constant value κf in the fluid phase
and the constant value κp = 0 in the particle phase. We represent the tangential velocity
discontinuity at the surface of the swimmers by a smoothing function to transition from
fluid to particle velocity over a thickness of one grid cell Δx (see appendix A). Physically,
this transition layer represents the boundary layer from the tip of the cilia to the ciliated
edge of the swimmer. We impose a no-flux condition at the true swimmer surface, so that
scalar concentration trapped in the thin modelled ciliated region is able to diffuse into the
fluid. Leakage of scalar concentration from within the swimmer’s body is minimized by
refining the grid, and mass transfer across the surface of the swimmers was negligible over
simulation times considered.

The particle motion is governed by the conservation of linear and angular momentum

mp
dup

dt
=

∫
Γp

τ · n dA − Vp
(
ρp − ρf

)
g + F c, (3.9)

Ip
dωp

dt
=

∫
Γp

r × (τ · n) dA + T c, (3.10)

where mp, Ip, Vp and ρp are the mass, moment of inertia, volume and density of the
particle. The hydrodynamic stress tensor τ = −pI + ρf ν[∇u + (∇u)T] is projected onto
the outward surface normal vector n along the particle surface Γp. The terms F c and T c
account for collision forces during particle-particle or particle-wall interactions. Normal
collision forces are evaluated from a simple linear spring-dashpot model, while tangential
collision forces are neglected. Overlap between swimmers is avoided following a method
similar to the one described in Li et al. (2016), in which the repulsive force is applied
when the swimmers come within two grid sizes Δx of each other. A detailed description
of the fluid solver and collision model, along with corresponding validation information,
is provided in Biegert et al. (2017).

In the classical form of the IBM, the forcing term f accounts for the no-slip condition
at the surface Γp of a particle by enforcing the condition

u = up + ωp × r on Γp, (3.11)

where up and ωp denote the translational and angular velocities of the particle, respectively,
and r indicates the position vector from the centre of the particle to a point on its surface.
For the present squirmer simulations, this traditional form of the IBM is modified, and the
forcing term f is instead calculated such as to impose the relative squirming velocity at
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Collective migration of active swimmers in stratified fluid 902 A23-9

the Lagrangian marker points on the particle surface

u = up + ωp × r + uθeθ on Γp, (3.12)

where uθeθ is the squirmer slip velocity imposed at the marker point, acting in the direction
of the coordinate vector eθ .

3.2. Non-dimensional formulation
The equations are rendered dimensionless by employing the swimmer radius R and
the terminal velocity of a squirmer in the Stokes regime, 2

3 B1 (Blake 1971), as
characteristic length and velocity scales, respectively. For all simulations, the characteristic
concentration C is chosen such that the dimensionless concentration varies between 0
and 1. The non-dimensional variables are thus given by

x → Rx ′, u → 2
3

B1u′,

t → 3R
2B1

t′, p → ρf

(
2
3

B1

)2

p′,

c → Cc′, Fc → ρf

(
2
3

B1

)2

R2F′
c,

Tc → ρf

(
2
3

B1R
)2

R3Tc.

Dropping the prime, the dimensionless governing equations become

∇ · u = 0, (3.13)

∂u
∂t

+ ∇ · (uu) = −∇p + 1
Re

Δu + Riξ f egc + f , (3.14)

∂c
∂t

+ ∇ · (uc) = 1
Pe

Δc, (3.15)

where Re = 2
3(B1R/ν), Ri = gCαR/ρf (2/3B1)

2, Pe = 2
3(B1R/κf ). Additionally, a reference

density variation is defined as Δρ = Cα. The particle momentum equations become

ρ̂pVp
dup

dt
= 1

Re

∫
Γp

τ · n dA − Vp
(
ρ̂p − 1

)
ĝ + F c, (3.16)

Ip
dωp

dt
= 1

Re

∫
Γp

r × (τ · n) dA + T c, (3.17)

with ĝ = gR/( 2
3 B1)

2, ρ̂p = ρp/ρf , Vp = 4
3π and Ip = 8

15π. The non-dimensional squirmer
velocity boundary condition becomes uθ = 3

2(sin θ + β sin θ cos θ).

3.3. Active control of swimming direction
The phototactic response of the brine shrimp drives the vertical migration of the swarm,
which in turn leads to the formation of a large-scale jet and the associated irreversible
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y

x

z

es
et

ẽ t

r̃

θt φ

FIGURE 5. Sketch of an active squirmer with phototactic response. The misalignment θt is the
angle between the swimming direction es and the desired target direction et. φ is the angle
between the projection of r̃ and the projection of ẽt onto the plane normal to the swimming
direction es.

mixing (Houghton et al. 2018). To reproduce this scenario in our simulations, we model
the shrimp’s phototactic response by modifying the squirming velocity in order to actively
control the orientation of the swimmer. This is accomplished by imposing a stronger
velocity on the side of the swimmer that is oriented away from the target than on the
side facing the target, so that the squirmer rotates towards the target. We take the velocity
non-symmetry to be proportional to the misalignment θt between the swimming and target
directions, as shown in figure 5, so that

cos θt = es · et. (3.18)

Locally, the value of the velocity modulation at a given point on the surface of the spherical
swimmer further depends on the angle φ between the projection of the position vector r
and the projection of the target vector et onto the plane normal to es. This angle is given
by

cos φ = r̃ · ẽt

||r̃|| · ||ẽt|| , (3.19)

where r̃ and ẽt are defined as

r̃ = r − (r · es)es and ẽt = et − (et · es)es. (3.20a,b)

We introduce a modulation function

G(θt, φ) =
√

1 − A(θt) cos(φ), (3.21)

where A(θt) controls the magnitude of the asymmetry and is such that 0 < A < 1. We
propose to evaluate A as

Aq,γ = q + (1 − q)erf (γ (1 − cos θt)) . (3.22)

The amplitude of the asymmetry using this model jumps to the step value q as soon as a
non-negligible misalignment is measured, and it smoothly increases to unity using an error
function. We use γ to modulate how sharply the swimmer will transition from a weak
correction to a strong correction of its swimming direction, depending on the value of θt.
The phototaxis model is heuristic and based on qualitative observations of the response
of the A. salina to light in the laboratory environment. In the IBM implementation of
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Collective migration of active swimmers in stratified fluid 902 A23-11

the squirmer model the motion of the particle is a result of fluid forces induced by the
velocity difference imposed at the surface of the particle. In order to stay consistent with
this formalism, we do not impose an external torque (as can, for instance, be used to study
of the effect of gyrotaxis on plankton migration; see Mitchell, Okubo & Fuhrman (1990))
to the equation of motion of the particles, but instead choose to modify the surface velocity
difference. Both approaches succeed in effectively adapting the swimming direction to
external stimuli. The parameters of the model were chosen such that a single swimmer
would correct its misalignment with a target within a few body lengths, but were found
to have a negligible impact on the simulations presented in the following. Finally, the
asymmetric squirming velocity is given by

uθ = F(θ) · G(θt, φ), (3.23)

where F(θ) = B1 sin θ + B2 sin θ cos θ is the original squirming velocity.

3.4. Numerical set-up
The simulations are conducted with our in-house code PARTIES, a second-order accurate
finite difference solver based on a staggered uniform Cartesian grid (Biegert et al. 2017).
Time integration is performed by a low-storage, third-order Runge–Kutta method, based
on a pressure-projection approach for satisfying the continuity constraint. The volume
fraction of the swimmers in the simulations is chosen to mimic the animal number density
of the experiments. The appropriate fluid velocity and concentration field boundary
conditions at the surface of the swimmers are enforced via the IBM and VoF techniques,
as described above. The above simulation approach allows us to consider a variety of flows
for different boundary and initial conditions.

The governing parameters are chosen to closely match the experimental values. As
described in § 4, the typical animal velocity observed in the experiments is 1 cm s−1.
We base the size of the spherical squirmer on the length of the A. salina appendages
of order 1 cm, which also represents the characteristic length scale over which the fluid
is being accelerated. Hence, we select as the squirmer radius R = 0.5 cm. For a fluid
viscosity of 10−6 m2 s−1, this yields a Reynolds number Re = 50, which fits within the
range of inertial flows recently investigated using the squirmer model (Chisholm et al.
2016; Li et al. 2016). Wilhelmus & Dabiri (2014) presented PIV measurements of the
near-body flow field surrounding a single A. salina and showed that the dominant flow
feature consisted of a quasi-steady downward jet in which the vertical velocity reached
values of 5 mm s−1. Numerical simulations of a single squirmer swimmer at Re = 50 and
β = −3 (see figure 6 of a slice of the vertical velocity) show that while very near-field
dynamics are dominated by the tangential velocity imposed at the body, near- and far-field
dynamics are dominated by a single, steady vertical jet. The vertical velocity within the jet
reaches values identical to those measures by Wilhelmus & Dabiri (2014), which indicates
that the parameter choice of Re = 50 and β = −3 capture the dominant jet feature of the
A. salina.

4. Coherent jet velocity

4.1. Experimental observations
A. salina exhibit slight negative buoyancy, similar to most marine zooplankton (Pond
2012), and, therefore, must overcome both gravity and fluid drag to propel themselves
upward. The required thrust for this upward swimming is produced via the rearward

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

al
te

ch
 L

ib
ra

ry
, o

n 
15

 S
ep

 2
02

0 
at

 1
9:

13
:2

3,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

61
8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.618


902 A23-12 R. Ouillon, I. A. Houghton, J. O. Dabiri and E. Meiburg

16
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2.0 cm s–1

1.5 cm s–1

1.0 cm s–1

0.5 cm s–1

0 cm s–1

–0.5 cm s–1

FIGURE 6. Slice in the vertical plane of the vertical velocity v through the centre of a
single squirmer swimmer at Re = 50 and β = −3, with quiver plot of plane velocity field
superimposed. The vertical velocity away from the swimmer is dominated by a downward jet
reaching dimensional velocities of 0.5 cm s−1, comparing well to the PIV measurements of
Wilhelmus & Dabiri (2014).

propulsion of fluid by the metachronal beating of the animal appendages (Wilhelmus
& Dabiri 2014), similar to the swimming modes of many marine zooplankton such as
Antarctic and Pacific krill (Catton et al. 2011).

In the laboratory migrations, as the animal number density within the aggregation
increased, the distance between each swimmer decreased and the fluid wakes of individual
swimmers began to interact, as seen in figure 7. Previous work found that the individual
flow fields combined to form a coherent downward jet-like flow within the aggregation,
even in the presence of strong stratification relative to oceanic values (Houghton et al.
2018). Here, we present the dependence of the jet-like flow on animal number density.

During the laboratory migrations conducted, following activation of the upper focused
LED, animal number density within the field of view gradually increased over the first
80–100 s. At first, fluid motion within the illuminated plane was limited to individual
wakes visualized due to animals swimming in the laser sheet. Over time, animal number
density asymptoted and a spatially coherent downward flow developed (see figure 8). The
initially high normalized spatial standard deviation of the vertical fluid velocity decreased
as the coherent downward jet developed within the swarm. The period from 100–155 s
was used for asymptotic values, chosen for the relatively constant animal number densities
among all experiments. To obtain an average asymptotic fluid velocity, all vertical velocity
values within the field of view between 100–155 s were averaged. As would be expected,
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FIGURE 7. Experimental measurements. Upper row: Pseudo-colour plot of instantaneous
vertical velocity in the illuminated plane at three different times. Lower row: Zoom of region
with in-plane velocity vectors at three different times: (a) t = 16.4 s, (b) t = 56.4 s and
(c) t = 100 s.
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FIGURE 8. Experimental measurements. (a) Instantaneous animal count in the field of view, in
1 s bins. (b) Average animal swimming speed over time, in 1 s bins. Coloured lines from dark
to light correspond to the first experiment to the last experiment run. Animal count within the
migration decreased over time, either due to reduced phototaxis or overall endurance. Animal
velocities were higher at early times, either because they were naturally faster or did not have to
contend with the flow fields of preceding animals.

migrations with a higher asymptotic animal number density resulted in a larger asymptotic
downward jet velocity (see figure 9). Each animal produced thrust in the form of a
downward induced velocity in order to propel itself up against gravity and drag. Thus,
the momentum in the flow and large-scale jet velocity increased with increasing animal
number density.
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FIGURE 9. Experimental measurements: (a) average vertical fluid velocity during each
migration over time; (b) asymptotic jet velocity as a function of animal number density. Error
bars represent the standard deviation of the animal count (horizontal) and fluid velocity (vertical).
The standard deviation of the animal count is due to animal density variability during the
asymptotic period as well as large noise in the counting algorithm. Adapted from Houghton
& Dabiri (2019).

4.2. Discrete swimmer simulations
We employ numerical simulations in order to investigate the formation of a jet by a
homogeneous swarm of squirmers moving in a constant density fluid for various animal
number densities. Towards this end, we consider a group of neutrally buoyant swimmers
that are initially distributed randomly in fluid at rest. We apply periodic conditions in the
swimming direction y and the spanwise z-direction, so that the swimmers can exit the
computational domain at one boundary and re-enter it at the opposite one (figure 10). Slip
walls are employed in the spanwise x-direction. The volume fraction of the swimmers is
determined by their number and the size of the simulation domain. All simulations have
Re = 50 and β = −3, and they employ a domain size of 20 × 40 × 10 with a constant
grid spacing of 1/30. The size of the computational domain in the z-direction being
limited to 10 swimmer radii, we note that the periodicity imposed in this direction might
affect the flow field and that the exact quantitative value of the measured mixing might be
different for larger, more realistic domains. We also note that the domain size is consistent
with previous numerical studies that considered biogenic mixing in periodic domains
(see, for instance, Wang & Ardekani 2015). The target light source is placed at height
2Ly , centred in the horizontal plane, so that the swimmers move upwards. We conducted
four simulations with 47, 94, 187 and 373 neutrally buoyant swimmers, corresponding
to volume fractions of 2.46 %, 4.92 %, 9.79 % and 19.53 %, in order to closely match
experimental conditions, as well as estimates of the packing density in the ocean (Huntley
& Zhou 2004; Wang & Ardekani 2015).

As the swimmers move through the domain and interact, they influence each other’s
velocity and direction. Figure 11 shows a two-dimensional slice of a typical configuration,
along with the fluid velocity vectors and contours of the velocity magnitude. The figure
demonstrates that the hydrodynamic interactions among the swimmers occur both at the
scale of the swimmers themselves, but also at scales several times larger than the swimmer
size due to the substantial extent of their wakes.
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FIGURE 10. Numerical set-up for simulating the formation of a jet by a homogeneous swarm
of swimmers in a periodic domain.
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FIGURE 11. Discrete swimmer simulation of the jet formation with a volume fraction of
swimmers of 9.79 %. (a) Pseudo-colour plot of the vertical velocity in a slice of the
three-dimensional domain. (b) Zoomed-in view corresponding to the dashed-line square in the
right frame, with the planar component of the velocity vector field.

The experiments discussed earlier had indicated that the jet velocity produced by the
global swarm depends on the local volume fraction of swimmers, i.e. on the animal
number density. Since the swarm extends over the entire computational domain in the
simulations, we compute the volume average of the vertical fluid velocity as

Vfluid(t) = 1
Lx LyLz(1 − φ̄p)

∫
Ω

v(1 − φp) dV, (4.1)

where φp is the local particle volume fraction. The local volume fraction is computed
in each cell of the numerical domain as the volume fraction of the cell occupied by the
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FIGURE 12. Simulation results: (a) average vertical fluid velocity for various mean volume
fractions of swimmers φ̄p over time; (b) asymptotic jet velocity as a function of the animal
number density, i.e. the mean volume fraction of swimmers.

particle phase, taking the value 0 when only fluid is present and 1 when only solid is
present in the cell. For all four global volume fractions, figure 12(a) displays the results
for Vfluid as a function of time in dimensional form, so that they can be directly compared
to the corresponding experimental data.

The jet velocity rapidly reaches a quasi-steady value, despite the nonlinearity of the local
particle-particle interactions. In agreement with the experiments, the jet velocity depends
strongly on the number of swimmers per unit volume. This is more easily characterized
by the average jet velocity in the quasi-steady regime defined as

V̄fluid = 1
τ

∫ t∗+τ

t∗
Vfluid(t) dt, (4.2)

where τ is an integration window sufficiently large so that V̄fluid does not depend on
τ . The results are presented in figure 12(b) as a function of the mean volume fraction
of swimmers φ̄p and suggest a nonlinear relationship between jet velocity and mean
volume fraction or, equivalently, animal number density. The dimensional jet velocity
and animal number density can be calculated from those results and compared to the
experiments. The mean volume fractions of swimmers φ̄p = 2.46 %, 4.92 %, 9.79 %
and 19.53 % correspond to animal number densities of 4.7 × 104 m−3, 9.4 × 104 m−3,
1.87 × 105 m−3 and 3.73 × 105 m−3, respectively. Recalling the reference velocity of
U = 1 cm s−1, the dimensional numerically measured jet velocities are 0.048 cm s−1,
0.084 cm s−1, 0.135 cm s−1 and 0.202 cm s−1. The animal number densities observed in
the simulations overlap with the values measured in the experiments, and the agreement
with experimentally measured jet velocities for such animal densities is excellent. This
shows that, in addition to adequately reproducing the flow field generated by an individual
A. salina (see figure 6), the numerical simulations capture the nonlinear interactions
between the wake jets produced by individual squirmers, and, thus, the resulting collective
motion.

Given that the swimmers and the fluid are initially at rest, and that there is no external
momentum transfer to the fluid or swimmers, the total momentum of the fluid has to
remain equal and opposite to that of the swimmers for all times, so that

V̄pφ̄p = −V̄fluid(1 − φ̄p), (4.3)
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Collective migration of active swimmers in stratified fluid 902 A23-17

where V̄p is the average swimmer velocity in the quasi-steady regime. For small animal
volume fractions, we can assume the fluid velocity to be uniform throughout the domain,
and the swimmers to move with their terminal velocity Vterm, so that

V̄p − V̄fluid = Vterm(β, Re). (4.4)

Equations (4.3) and (4.4) can then be solved for V̄p and V̄f as functions of (φ̄p, β, Re),
yielding

V̄fluid = −φ̄pVterm, (4.5)

V̄p = (1 − φ̄p)Vterm. (4.6)

Note that the velocities are made dimensionless by the terminal velocity of a squirmer
in the Stokes regime, such that Vterm(β, 0) = 1 for all β. Scaling of the terminal velocity
with the Reynolds number is thoroughly investigated by Chisholm et al. (2016). In order to
evaluate the terminal velocity of an individual swimmer for the specific values of β = −3
and Re = 50, we conduct a simulation of a single swimmer in an unstratified fluid column,
which shows a terminal velocity Vterm ≈ 2. This is consistent with the results of Chisholm
et al. (2016) who found a terminal velocity of approximately 2.5 for β = −5. Pushers in
an inertial regime exhibit faster swimming speeds than in the viscous regime such that
Vterm > 1 for all values of β < 0.

Figure 12(b) compares the prediction from (4.5), referred to as the dilute model, to
the results of the numerical simulations and experimental measurements. Additionally, a
linear and an exponential fit are computed as described below. The dilute model passes
through the origin and through the numerical data point associated with the smallest
volume fraction. This demonstrates that the homogeneous flow assumption is valid at
low volume fraction and that the dilute model is accurate at low volume fractions.
The figure also shows that the swarm jet velocity depends sublinearly on the animal
number density, and that nonlinear interactions of the wakes impact the jet formation as
soon as φ̄p > 2.5 %. The least-square exponential and linear fits, respectively, take the
form Vexp. = aebn + c and Vlin. = a′n + b′, where n is the animal number density and
a, b, c, a′, b′ are constants. The optimal fit is computed over the whole set of numerical and
experimental data. As the number of swimmers (and, therefore, the number of individual
wake interactions) increases, dissipation increases as well, leading to a loss in collective
efficiency and explaining the sublinear nature of the jet velocity as a function of animal
number density. As a consequence, the exponential fit obtained from the combined data
agrees remarkably well with the numerical data and, without any arbitrary constraints,
recovers the c = −a condition that guarantees that Vexp. = 0 at n = 0, i.e. that the jet
velocity is zero in the absence of swimmers. Models for the large-scale effects of A. salina
swarms on the water column can rely on jet velocity predictions based on the estimated
animal number density. Such efforts are described in § 6. Additionally, there is a simple
upper boundary to the maximum jet velocity produced by the swarm, determined by
momentum conservation and terminal swimmer velocity and that assumes that individual
swimmers encounter a perfectly homogeneous flow. This idealized dilute scaling agrees
well with numerical and experimental data for low volume fractions.

5. Mixing in the presence of a density stratification

5.1. Experimental observations
In order to assess the ability of swarms of swimmers to contribute to oceanic
mixing processes, it is important to account for the effects of density stratification
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FIGURE 13. (a) Schematic describing transient flow in a linearly stratified tank. Greyscale
colouring corresponds to fluid density, with the jet transporting light coloured, low density fluid
downward. Arrows indicate fluid motion. The yellow dashed line corresponds to a representative
location to obtain the vertical density profiles presented in the frame on the right. (b) Four control
density profiles were obtained prior to a migration. Three separate profiles during the migration
were obtained at t1 = 18 min, t2 = 24 min and t3 = 28 min.

on the swarm-induced fluid transport processes described in the previous section.
Values of the oceanic buoyancy frequency N = √−(g/ρ)(∂ρ/∂y) typically fall into the
range 10−3 s−1 ≤ N ≤ 10−2 s−1, whereas the present laboratory experiments employed
significantly larger values of N, up to 10−1 s−1, due to laboratory constraints. Nevertheless,
a strong downward jet was observed to transport less dense fluid against the stable
background density gradient, as seen in figure 13. The downward fluid transport within
the jet was balanced by an upward counterflow outside of the swarm.

The transient measurements shown in figure 13(b) show fluid with approximately the
surface density transported to the lower extent of the aggregation, rather than a series of
smaller-scale overturns that would reduce transport and mixing. The vertical extent of fluid
transport varied over time, due to variability in the balance between the swarm propelling
fluid downward and the buoyant restoring force on the displaced fluid. We note that these
density profiles were obtained during an active migration with significant fluid motion.
Therefore, the local density profile is not representative of the entire tank cross-section
and, thus, the one-dimensional density transect is not expected to conserve mass.

The transient profiles illustrate a mechanism for altering the density stratification via
large-scale fluid transport. The resulting stirring increases the surface area and gradient
strength between fluid parcels of different densities, which in turn enhances the rate of
scalar diffusion and irreversible mixing. In the long-term mixing experiments the density
profiles measured along a single vertical line (see § 2) show significant smoothing of the
two-layer stratification, indicative of irreversible mixing due to the migration of the swarm.
Two different stratification strengths, Nint = 0.10 s−1 and Nint = 0.05 s−1, are presented in
figure 14, illustrating the significantly enhanced mixing for a range of restratifying forces.
By fitting the solution of the one-dimensional vertical diffusion equation with variable
diffusivity to the measured profiles, Houghton et al. (2018) argued that this enhanced
mixing reflects an effective diffusivity approximately three orders of magnitude larger than
the molecular diffusivity of salt. Interestingly, mixing across the interface was vertically
asymmetric, with mixing extending further above the interface than below.
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FIGURE 14. Concentration profile evolution from the original two-layer stratification for two
stratification strengths. Repeated final profiles were constant, indicating the tank was fully
quiescent and horizontally homogeneous and the density profile change was due to irreversible
mixing. Concentration profiles are shifted and normalized to span a range from 0 to 1 for ease of
comparison, where a concentration of 0 corresponds to the minimum initial salt concentration of
the upper layer and 1 corresponds to the maximum initial salt concentration of the lower, denser
layer for a given experiment. Adapted from Houghton et al. (2018).

5.2. Simulations: irreversible mixing within the swarm
The post-migration experimental density profiles shown in figure 14 demonstrate
the swarm’s ability to generate substantial irreversible mixing. The associated flow
visualization images provided in figure 13 suggest that this mixing occurs both within
the swarm as well as at the edge of the swarm-induced jet. In order to analyse the
dependence of this irreversible mixing on the animal number density, we apply the same
simulation set-up as in § 4.2, but now for a two-layer stratified ambient, as shown in
figure 10. We continue to employ periodic boundaries in the vertical direction for the
swimmers and the fluid velocity field, but impose a vanishing normal derivative at those
boundaries for the concentration variable. We calculate the Richardson number directly
from the experimental set-up, which has a density difference Δρ = 0.051 kg m−3. For
the gravitational acceleration g = 9.81 m s−2 and the reference density ρf = 1000 kg m−3,
we obtain Ri = RΔρg/ρf U2 = 0.025. In order to reduce the computational cost, we
employ Sc = ν/κf = 1, which is O(103) smaller than the experimental value for salt
ions (Yuan-Hui & Gregory 1974). In the flows of interest the dominant mechanism for
mixing is convective in nature, so that the precise value of the molecular diffusivity is
of secondary importance. The small Schmidt number will nonetheless enhance turbulent
diffusion and, hence, affect the details of the density field as well as overestimate the
amount of mixing generated by the swimmers. A sensitivity study to the Schmidt number
was not carried out due to the computational limitations incurred by the necessary mesh
refinement, but could in the future provide valuable insight into the role of molecular
diffusivity on within-swarm mixing. The initial density profile has an error function shape
1
2(1 − erf((y − H/2)/δp)), with a pycnocline thickness δp = R/3.
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FIGURE 15. Time series of sorted concentration profiles for various mean swimmer volume
fractions in the periodic, two-layer stratified domain.

All simulations employ Re = 50 and β = −3, in a domain of size 20 × 40 × 5 with a
constant grid spacing of 1/30. The target light source is placed at the height 2Ly , centred in
the horizontal plane, so that the swimmers move upwards. We conducted three simulations
with 24, 48 and 93 swimmers, corresponding to volume fractions of 2.51 %, 5.03 % and
10.05 %.

We quantify irreversible mixing by employing the concept of background potential
energy as introduced by Winters et al. (1995). Changes in the background potential energy
Eb directly measure the irreversible transfer of energy that goes into mixing. For a given
system, Eb is defined as the lowest potential energy that can be obtained via the reversible
rearrangement of fluid parcels. We write

Eb = g
∫

Ω

ρy∗ dV, (5.1)

where the mapping y∗(x, t) gives the vertical position of a fluid parcel of density
ρ( y∗) originally at position (x, t). The corresponding sorted concentration profile c( y∗)
represents the configuration of the lowest potential energy, in which the fluid parcels are
arranged in layers of upward decreasing densities. The numerically computed, sorted
concentration profiles shown in figure 15 are qualitatively similar to the experimental
profiles of figure 14.

In order to quantify the increase in mixing due to the presence of the swimmers, we
calculate an effective diffusivity κeff from the sorted concentration profiles c( y∗) by
solving the minimization problem

r = min
κeff

(‖c( y∗) − cκeff ‖
)
. (5.2)
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FIGURE 16. Ratio of effective to molecular diffusivity for various mean swimmer volume
fractions in the periodic, two-layer stratified domain. (a) Variation with time. At t = 0, κeff /
κ = 1 as swimmers are initially static. (b) Final computed value as a function of swimmer
volume fraction, and linear fit. (c) Comparison of horizontally averaged profiles and sorted
profiles at t = 50.

Here cκeff represents the solution to the one-dimensional heat equation for a two-layer
problem with a diffusivity κeff that is constant in space and time. Because the sorted
profiles are considered, and the mapping of y∗ is not representative of physical space,
advection does not need to be considered when fitting the solution to the diffusion
equation. In addition, we know that κeff /κ = 1 initially since the swimmers and the
fluid are initially at rest, cf. figure 16(a). As the swimmers cross the pycnocline, they
displace fluid and lead to a monotonic increase in effective diffusivity. The simulation
results show an effective diffusivity that is more than an order of magnitude larger than
the molecular diffusivity for the largest volume fraction, suggesting a strong impact of
the swimmers on interfacial mixing. The final ratio of effective to molecular diffusivity
increases approximately linearly with the swimmer volume fraction, which agrees well
with results for squirmers in a linearly stratified environment (Wang & Ardekani 2015).
Figure 16(c) compares the horizontally averaged concentration profiles to the sorted ones
employed for the effective diffusivity calculation.
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FIGURE 17. Sketch of the initial configuration for simulations of swarms migrating across a
stably stratified density interface. (a) Upward moving swarm, and (b) downward moving swarm.

We note that Houghton et al. (2018) calculated a depth-dependent effective diffusivity,
which they found to have a maximum in the upper fluid layer and a minimum in the
lower layer. The authors reported effective diffusivities up to three orders of magnitude
larger than the molecular diffusivity of salt ions, although we have to keep in mind that
the molecular diffusivity in the experiments was O(1000) smaller than in the simulations.
This results in much smaller ratios of effective to molecular diffusivity in the simulations
than in the experiments. As computational power increases, we anticipate that simulations
at more realistic values of the molecular diffusivity will become possible in the future and
allow for a more direct comparison with experimental data.

5.3. Simulations: preferential direction of scalar transport
As shown in figure 14, experimentally measured density profiles between migrations reveal
an asymmetry with respect to the centreline of the profile. Since we are in the Boussinesq
regime, we hypothesize that this asymmetry, or skewness, in the profiles results from the
swimming direction, rather than from the density stratification.

In order to explore this issue we simulate the migration of a swarm of swimmers across a
stably stratified density interface within a closed domain, as sketched in figure 17. Initially
the swimmers are randomly distributed in the lower (upper) half of the domain for an
upward (downward) moving swarm, such that the initial volume fraction is φ̄p = 0.1 in
the populated half, equivalent to an animal number density of 1.9 × 105 m−3. In both
cases, the swimmers are neutrally buoyant with respect to the upper fluid layer. The target
light source is placed at y = 2Ly (y = −Ly) for the upward (downward) moving swarm.
We employ the closed domain set-up in order to prevent a mean flow from developing.
The definitions of the numerical parameters are summarized in table 1 and the values
used in the simulations are summarized in table 2. Under the Boussinesq approximation,
the only feature that prevents the two cases from being equivalent to each other is the
swimmer density, which equals the density of the upper fluid layer in both cases. In the
lower layer the upward moving swarm thus experiences a buoyancy force in the direction
of swimming, while the downward moving swarm experiences a force opposed to the
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Collective migration of active swimmers in stratified fluid 902 A23-23

Parameter name Symbol Definition

Reynolds number Re
2B1R

3ν

Péclet number Pe
2B1R
3κf

Non-dimensional gravity ĝ
gR

(2B1/3)2

Richardson number Ri
gCαR

ρf (2B1/3)2

Relative particle density ρ̂p ρp/ρf

Squirming mode β B2/B1

TABLE 1. List of the simulation parameters.

(Lx , Ly, Lz) (Nx , Ny, Nz) Nswim. R Re Pe Ri ρ̂p β es,i

(30, 40, 5) (900, 1200, 150) 72 1 50 50 0.025 1 −3 ey
(30, 40, 5) (900, 1200, 150) 72 1 50 50 0.025 1 −3 −ey

TABLE 2. Numerical parameters for simulating the migration of a swarm across a density
interface.

swimming direction. Hence, a comparison of the two cases will enable us to assess the
influence of the animal density on the transport.

Snapshots of a two-dimensional plane of the density field at different times are presented
in figure 18 for the case of the upward moving swimmers. Swimmers that are sliced by the
plane appear as white disks, whose size depends on the relative position of the swimmer
with respect to the plane. The motion of the swimmers is observed to deform the density
interface, whose initial location is marked by the dotted black line. The squirmers carry
dense fluid with them above the interface, while their wake pushes lighter fluid below the
interface.

The scalar transport is seen to be skewed in the direction of swimming, which
confirms that the experimentally observed skewness is indeed an intrinsic property of
the swimming-induced transport. We can define a quantitative indicator of the skewness
in the form of the transport length

Lskew = Lup − Ldown, (5.3)

where Lup and Ldown represent the first moments of the scalar field

Lup =

∫ Ly

hp

c̄|y − hp| dy

∫ Ly

hp

c dy

, Ldown =

∫ hp

0
(1 − c̄)|y − hp| dy∫ hp

0
(1 − c̄) dy

. (5.4a,b)
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FIGURE 18. Two-dimensional slice of the density field for upward moving swimmers at three
different times. The black dotted line denotes the initial location of the pycnocline (c = 0.5).

Here c̄ denotes the horizontally averaged concentration field and hp represents the
instantaneous vertical position of the pycnocline, which is evaluated as

hp = Ly

2
1 − φ̄0

1 − φ̄t
, (5.5)

where φ̄t indicates the time-dependent volume fraction of swimmers in the lower fluid
layer. This definition of hp reflects the fact that conservation of volume causes the
y-location where c = 0.5 to shift downward as the swimmer volume is transferred from
the lower to the upper layer. Since φ̄t itself is a function of hp, this equation is solved
numerically at each time in order to compute Lup and Ldown .

Figure 19(a) presents results for Lskew as a function of time for both upward and
downward moving swarms. The transport length is positive (negative) for upward
(downward) migration. The absolute values are very similar, suggesting that under the
current conditions the swimmer density has little impact on the skewness of transport. This
confirms that the experimentally observed skewness is a result of preferential transport in
the direction of the swarm, and not due to the effect of the swimmer buoyancy.

The above observations suggest that the preferred transport is driven by the amount
of resident fluid that a swimmer carries along next to its surface, which is a function of
the squirmer mode β. Figure 19(b) compares the transport length Lskew for a single pusher
with β = −3 and a neutral swimmer with β = 0. We exclude pullers from the comparison,
since at Reynolds numbers O(100) they produce an unstable wake (Chisholm et al. 2016),
so that the squirmer model is unlikely to represent animals in the centimetre-size range.
The figure demonstrates that pushers generate a much stronger skewness than neutral
swimmers. Physically, this is due to the ability of pushers to trap dense fluid in the
recirculation region above the head (see figure 4), thus carrying the dense fluid in closed
streamlines. Pushers travel faster than neutral swimmers, but even for corresponding
vertical swimmer locations pushers transport dense fluid over longer distances, and perturb
the interface more strongly than their neutral counterpart, as seen in figure 20. This
suggests that a comparison of experimental and computational skewness can potentially
provide information on whether a particular animal functions more like a pusher or a
neutral swimmer.
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FIGURE 19. (a) Transport length Lskew as a function of time for upward and downward moving
swarms. (b) Transport length generated by a single swimmer moving through a pycnocline for
two squirming modes: puller (β = −3) and neutral (β = 0).
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FIGURE 20. Slice of the scalar concentration field for a single swimmer moving through a
sharp pycnocline for (a) a pusher squirmer, and (b) a neutral squirmer.

6. Continuum model for mixing at the swarm scale

As mentioned earlier, we distinguish between squirmer-scale mixing processes due
to the motion of individual animals, and swarm-scale mixing events involving the jet
generated by the collective action of all swimmers. Understanding and quantifying the
respective roles of the processes at these different scales is essential for developing realistic
biogenic mixing models for the ocean. The swimmer-resolving simulations described in
the previous section successfully reproduced the mixing dynamics at the scale of each
animal, as well as the jet formation due to their collective action. In the following, we aim
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to develop a continuum model capable of capturing the mixing events at the scale of this
jet, as observed in the flow visualization experiments of figure 13(a).

Consider the momentum balance of a neutrally buoyant individual swimmer migrating
upward. If the swimmer moves at a steady velocity, the drag it experiences is balanced by
its thrust, so that it does not impart any net momentum onto the fluid. Consequently, the
upward momentum transferred by the swimmer onto fluid parcels near its head equals the
downward momentum imparted on fluid parcels in the wake of the swimmer, which form
the swimmer-scale jet. For a negatively buoyant swimmer moving at a steady velocity,
the balance between thrust and drag is modified by the gravitational force. When many
swimmers migrate upwards within close proximity of each other in a dense swarm,
these swimmer-scale upward and downward moving fluid parcels partially neutralize each
other due to viscous diffusion. However, at the swarm scale the collective action of the
swimmers still results in the net upward acceleration of fluid parcels ahead of the swarm,
and in the downward acceleration of fluid parcels in its wake. This downward moving fluid
forms the swarm-scale jet observed in the experiments of figure 13(a).

We model the jet formation by the collective action of the swimmers at the swarm scale
via a source term in the vertical momentum equation that extends over the scale of the
swarm Rs, and travels with the swarm velocity Vs. The Navier–Stokes equations with the
swarm source term take the form

∇ · u = 0, (6.1)

∂u
∂t

+ (u · ∇) u = − 1
ρ0

∇p + ν∇2u + f , (6.2)

where the forcing term f is defined as

f = −f0χ(t, x)ey. (6.3)

The upward migrating swarm injects downward momentum into the swarm-scale jet. As a
first step, we assume a spherical swarm shape, with an error-function-type transition zone
at its edge, and fluctuations along the spherical coordinates θ and φ to mimic the spatial
variability of a real swarm. Hence, the swarm radius has the form

Rs(θ, φ, t) = R̄s (1 + ε · sin [2π(φ + δ1)] · sin [2π(θ + δ2)]) , (6.4)

where δ1 and δ2 are random numbers between 0 and 1 selected at each time step, and the
perturbation amplitude is ε = 0.1. The error function avoids numerical discontinuities at
the interface between the source and the fluid domain, while the small fluctuations prevent
the jet from remaining in a laminar state over an artificially long time and allow shear
instabilities to develop. The source function χ(t, x) is defined as

χ(t, x) = 1
2

(
1 + erf

(
r(t, x) − Rs(θ, φ, t)

δs

))
, (6.5)

where r(t, x) is the radial distance from the swarm centre X s = X 0 + Vstey , with X 0
denoting the initial swarm location at t = 0. In order to quantify the strength f0 of the
source term, consider a spherical swarm of radius R̄s that migrates upward with velocity
Vs. We model this swarm as a self-propelled porous sphere subject to a dimensional drag
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FIGURE 21. (a) Set-up for swarm simulations. (b) Vertical velocity profile as a function of x on
a slice in the z-direction going through the centre of the swarm and at y = ys − 2R̄s and t = 50.

force
FD = CDρ0φpV2

s R̄2
s , (6.6)

where CD represents the drag coefficient. Consequently, we obtain

f0 = CDφp
V2

s

R̄s
. (6.7)

We render the Navier–Stokes equation dimensionless with the prescribed swarm velocity
Vs and the mean radius of the swarm R̄s, so that it takes the form

∂u
∂t

+ (u · ∇) u = −∇p + 1
Re

Δu − CDφpχ(t, x)ey. (6.8)

The swarm Reynolds number Re = VsR̄s/ν is orders of magnitude larger than the
Reynolds number of a single swimmer.

Based on the above approach, we conduct a series of simulations for increasingly large
swarm Reynolds numbers. To this end, we employ a computational domain of size Lx ×
Ly × Lz = 10 × 100 × 10, with free-slip top and bottom walls and periodic boundaries in
x and z. The swarm is initially placed at the centre of the x, z-plane, and at y = 40. The
passive concentration interface is located at mid-height y = 50, cf. figure 21(a). Since we
do not know the precise value of the effective drag coefficient CD, we make an arbitrary
choice CDφp = 1. The choice of CD can be justified a posteriori by measuring the jet
velocity produced by the swarm relative to the swarm velocity, and validating it with field
or laboratory measurements of given species of animals. We note that the lateral extent of
the simulation domain is ten times the swarm radius, so that we expect confinement effects
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FIGURE 22. Snapshots of the concentration field at t = 200 for four jet Reynolds numbers in
the x, y-plane centred in the z-direction.

to be reasonably small. In addition, we employ periodic boundary conditions in the lateral
directions, which further reduce the effect of confinement.

For the early time t = 50, when the jets are still stable, figure 21(b) displays
representative velocity profiles through downward jets, recorded at a distance 2R̄s below
the swarm centre. Independent of the Reynolds number, the jets have peak velocities of
Vjet ≈ 0.7Vs, so that the jet Reynolds number Rejet = VjetR̄s/ν ≈ 0.7Re. Snapshots of the
concentration field for various Reynolds numbers reflect the destabilization of the jet at
time t = 200, along with the resulting mixing, cf. figure 22.

In contrast to the fully resolved squirmer simulations discussed earlier, mixing at the
swarm scale results in a strongly asymmetric sorted concentration profile c( y∗), which
cannot be captured by a constant effective diffusivity, cf. figure 23(a). Following Houghton
et al. (2018), we thus introduce an effective diffusivity κeff that varies with y, and which
can be obtained by solving the transport equation

∂c
∂t

= ∂

∂y

(
κeff ( y)

∂c
∂y

)
(6.9)
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FIGURE 23. (a) Sorted concentration profiles at t = 200 for various jet Reynolds numbers. The
dashed line corresponds to the initial concentration profile. (b) Ratio of effective to molecular
diffusivity as a function of the sorted vertical height for different Reynolds and Péclet numbers
(Re = Pe). (c) Maximum ratio of the effective to molecular diffusivity ratio as a function of the
Reynolds number.

to obtain the best fit with the computed profile c( y∗). Towards this end, we employ a fully
implicit backward Euler time stepping scheme, in combination with second-order central
finite differences for the spatial discretization. The objective cost function L(κeff ) =∑

i(c
∗( yi) − cκeff ( yi))

4 is minimized using MATLAB’s built-in nonlinear fsolve function.
Elevating the error to the fourth power improves convergence of the minimization function.
The choice of κeff ( y) = κ as the initial guess is critically important, since the effective
diffusivity away from the pycnocline carries little meaning as the error-function-type
solution flattens out. The above initial guess thus allows us to identify regions of strong
mixing where the effective diffusivity is much larger than the molecular value.

Figure 23(b) indicates that κeff ( y∗) is largest in the lower section of the pycnocline.
Figure 23(c) shows that the maximum ratio of effective to molecular diffusivity increases
approximately linearly with the jet Reynolds number. For Rejet = 2800, this ratio already
reaches a value above 300. This is equivalent to a swarm Reynolds number of 4000, which
corresponds to a moderate size swarm of radius 40 cm migrating at 1 cm s−1. For reference,
schools of Antarctic krill have been observed to range from as few as 150 individuals in
a volume of 2000 cm3, up to swarms larger than 30 m in horizontal extent (Hamner et al.
1983).

As a key observation, we note that even for a moderate size swarm the effective
diffusivity associated with the jet is much larger than that of the mixing processes at
the swimmer scale, cf. figure 23(c). We hence expect larger swarms to generate most of
their mixing through the swarm-scale coherent jet that they form, rather than through the
small-scale processes within the swarm. The amount of mixing generated by the swarm is
thus mainly controlled by its size, and by the velocity of the coherent jet which itself was
shown to depend on the volume fraction of swimmers. We thus postulate that models for
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diapycnal mixing induced by swarms of swimmers have to account for the swarm size as
well as the associated jet velocity.

7. Conclusion

We have explored the collective vertical migration of a swarm of inertial
swimmers through a stably stratified density interface. Towards this end, we conducted
closely coordinated laboratory experiments and computational simulations that provide
fundamental insight into the associated transport and mixing processes, both at the
swimmer and at the swarm scale.

The laboratory experiments exploit the phototactic response of A. salina by employing
light sources in order to trigger controlled swarm migrations. The computational approach
successfully duplicates this key experimental feature by adapting the inertial squirmer
model in order to provide the hydrodynamically interacting individual swimmers with the
ability to direct their motion towards a specified target. The computational parameters such
as the swimmer- and swarm-scale Reynolds numbers, the Richardson number, as well as
the number of swimmers and the animal number density in the swarm closely match the
experimental values. In the direct Navier–Stokes simulations the individual swimmers are
represented by means of an immersed boundary method approach, while the evolution of
a scalar concentration field is tracked via the volume of fluid concept.

Both the experiments and the simulations demonstrate intense mixing at the scale of
the individual swimmers, due to the fluid motion that these induce. The hydrodynamic
interaction of the individual swimmers furthermore produces a spatially coherent source
of thrust that leads to the formation of a swarm-scale jet in the direction opposite to the
migration. Numerically calculated jet velocities closely match experimental measurements
for equivalent animal number densities. The jet velocity is seen to increase monotonically
with the animal number density, although at a sublinear rate. For steadily moving dilute
swarms, the jet velocity is well predicted by a simple analytical model that assumes
spatially uniform jet and swimmer velocities.

The migrating swarm causes strong irreversible mixing that can be quantified via
the effective diffusivity concept. The experiments demonstrate that locally this effective
diffusivity can be up to three orders of magnitude larger than the molecular value. This
observation is consistent with the numerical simulation results, although these employ a
larger molecular diffusivity, so that the ratio of effective to molecular diffusivity is smaller.
Simulations at more realistic values of the molecular diffusivity might become possible
in the future, which would allow a more direct comparison of numerical simulations with
experiments. We nonetheless find that the effective diffusivity increases linearly with the
volume fraction of the swimmers or, equivalently, with the animal number density.

Even though a steadily moving, neutrally buoyant swimmer does not impart any net
momentum on the fluid, we find that its action leads to preferential scalar transport in the
swimming direction. By analysing the resulting skewness of the scalar concentration field,
we find that this preferential scalar transport strongly depends on the specific squirmer
mode of the individual swimmer. Comparisons between experimental and computational
observations suggest that A. salina behaves more like a pusher than a puller.

As a final step, we propose a continuum model for the generation of a large-scale jet
by a swarm, based on an idealization of the swarm as a self-propelled porous sphere.
This model reproduces the large ratios of effective to molecular diffusivity observed in
the experiments, and it suggests that large swarms generate most of their mixing through
the coherent jet that they form at the scale of the swarm, rather than by processes at the
swimmer scale.
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Appendix A

The smoothing function that ensures the continuity of the compound velocity field û in
(3.6) is given by

ξ ′
p(x) = (1 − ξf (x))

∑
p=1...Nl

erf
(

η′
p(x)

δs

)
, (A 1)

where η′
p = max(0, ηp) with ηp the distance to the particle surface given by

ηp = Rp − ||x − xp||. (A 2)

The compound velocity is thus given by

û = (1 − ξ ′
p)u + ξ ′

p(up + ωp × (x − xp)). (A 3)
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