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With consensus that carbon-intensive energy generation 
has contributed to global warming1, the decarbonization 
of electricity production is of paramount importance2. 

Renewable energy must produce more than 60% of the primary 
energy supply by 2050 to achieve the 2 °C warming target set by 
the Paris Agreement3. Just 14% of worldwide energy production in 
2015 was from renewables3. Meanwhile, the United States has set a 
goal of 100% carbon-free electricity generation by 20354, with simi-
lar international goals elsewhere5. Further, approaches to maximize 
renewable energy production in emerging economies are critical to 
address climate change6. Improvements in the efficiency of wind 
generation will enable a more rapid and lower-cost transition to a 
decarbonized energy system7.

While individual horizontal axis wind turbines are approaching 
theoretical peak efficiency8, wind farms exhibit losses from tur-
bine interactions. Utility-scale wind farms can lose 10–20% of their 
energy production per year due to wake interactions between tur-
bines9. Individual turbines generate turbulent, energy-deficit wake 
regions downwind10. Wind turbines are placed in close proximity 
to decrease the levelized cost of energy for the collective farm by 
reducing the capital costs11. The result is that modern turbines are 
spaced 6−10 rotor diameters apart in onshore wind farms12, which 
results in substantial wake interactions13. All utility-scale wind tur-
bines are operated to maximize their individual power production14. 
Such control inherently neglects wake interactions between neigh-
bouring turbines.

Individual wind turbine operation attempts to minimize the yaw 
angle of misalignment between the incident wind direction and 
the turbine rotor orientation15. We consider collective wind farm 
operation through wake steering control, wherein certain wind 
turbines in the wind farm are intentionally misaligned in yaw with 
respect to the incident wind direction. The power production of 

the yaw-misaligned wind turbine is generally reduced, because the 
wind velocity perpendicular to the rotor is reduced16. The power 
production for the waked turbine may be increased due to wake 
deflection associated with the yawed turbine17.

The goal of wake steering optimization in this study is to select 
the yaw-misalignment angles that maximize the power production 
of the wind farm by achieving increases in the power production 
of downwind turbines that compensate for the loss in power of the 
yaw-misaligned upstream turbines. Wake steering also affects loads 
and fatigue in the wind farm18. Wake steering can either increase 
or decrease fatigue in several ways, including potentially modifying 
turbine yaw duty, the incident turbulence intensity to waked tur-
bines, wind turbine blade-bending moments and wind turbine tor-
sional moments. While this study is focused on maximizing power, 
and loads are not directly considered in the optimization objec-
tive function, the empirical impact of the wake steering control 
on the determinants of turbine loads are measured and discussed.  
The power-maximizing yaw-misalignment angles inherently 
depend on the site-specific wind farm layout19 and incident wind 
conditions20,21, which vary in time. Therefore, the yaw optimization 
needs to be performed for each possible state of wind conditions22, 
which is high-dimensional.

Because computational fluid dynamics simulations remain 
intractable for such optimization23, the optimization of the yaw 
angles is generally performed with numerically efficient flow control 
wake models24. To remain tractable for optimization, wake models 
neglect certain flow physics25 and parameterize the effects of turbu-
lence in the wind farm and the atmospheric boundary layer (ABL)26. 
Using a wind farm operational strategy resulting from the optimiza-
tion of a wake model has demonstrated potential to increase wind 
farm power production in large eddy simulations of idealized ABL 
conditions21,24,27 and wind tunnel experiments28,29.
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In wind farms, turbines are operated to maximize only their own power production. Individual operation results in wake losses 
that reduce farm energy. Here we operate a wind turbine array collectively to maximize array production through wake steer-
ing. We develop a physics-based, data-assisted flow control model to predict the power-maximizing control strategy. We 
first validate the model with a multi-month field experiment at a utility-scale wind farm. The model is able to predict the 
yaw-misalignment angles which maximize array power production within ± 5° for most wind directions (5–32% gains). Using 
the validated model, we design a control protocol which increases the energy production of the farm in a second multi-month 
experiment by 3.0% ± 0.7% and 1.2% ± 0.4% for wind speeds between 6 m s−1 and 8 m s−1 and all wind speeds, respectively. 
The predictive model can enable a wider adoption of collective wind farm operation.
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Initial field experiments of collective wake steering operation at 
utility-scale wind farms implemented operational strategies that are 
based on the optimization of a flow control model19,30–32. These stud-
ies have demonstrated that collective operation can increase power 
production for wind conditions that result in high wake losses, 
compared with standard individual control. However, to achieve 
the maximum power production of the wind farm, the flow control 
models must reliably predict the power-maximizing control strat-
egy. It has not yet been demonstrated, using field data, that flow 
control models are able to predict the control strategy which maxi-
mizes power for utility-scale wind farms, because this requires both 
an accurate predictive flow model and a field experiment with sus-
tained operation in suboptimal strategies.

In this study, we develop a methodology for operating wind 
turbines collectively to maximize wind farm energy production 
based on a predictive wind farm flow control model. We develop 
a predictive wind farm flow control model (Methods) that predicts 
the power production of each turbine within a wind farm based 
on the incident wind conditions and the control strategy of each 
individual turbine. The flow control model predicts the power pro-
duction of upwind turbines given their operational strategy and 
given the measured incident ABL wind profiles16 and predicts the 
power production of the downwind turbines using an analytical 
wake model19,33,34 and leveraging data-driven parameter estimation 
techniques35. The modelling framework is described in Fig. 1. We 
then design and implement a field experiment at a commercial wind 
farm in India where we intentionally yaw misalign a wind turbine 
with a rotor diameter of approximately 120 m using fixed yaw angles 
between −25° and 25°. Importantly, we conduct our experiments in 
configurations predicted to result in optimal performance and sub-
optimal regimes. This enables direct validation of the flow control 
model predictions. Considering the yaw angles between −25° and 
25°, we show that the proposed flow control model (Fig. 1) is able to 
predict the yaw-misalignment angles for the farm which maximize 
power production to within ± 5° for most (4/6) conditions tested. 

Further, the model predicts the power-maximizing yaw angles 
within ± 10° for 5/6 cases and the power-maximizing yaw direc-
tion for all cases (6/6). Leveraging the validated flow control model, 
we design a wake steering protocol wherein the yaw-misalignment 
angles of the wind farm vary according to the incident wind con-
ditions. We then perform a second field experiment where we 
implement the power-maximizing wake steering protocol. We dem-
onstrate a 1.2% ± 0.4% energy increase for the utility-scale wind 
farm for the wind directions of interest, compared with standard 
individual control.

Collective wind farm control field experiment
The wind farm (Fig. 2a) consists of approximately 100 turbines and 
is located in northwest India. The turbines are approximately 100 m 
in hub height and approximately 2 MW in capacity. We consider a 
subset of four turbines shown in Fig. 2b. We focus our experiment 
on turbines 1, 2 and 3. An adjacent freestream turbine is used as a 
reference and is labelled as ‘Ref ’ (Fig. 2b). The turbines are approxi-
mately aligned for northwesterly inflow (α ≈ −5°). The prevailing 
wind conditions during the summer and winter are southwesterly 
and northeasterly, respectively, with spring and autumn as shoulder 
seasons with transitional winds. We focus our experiment on the 
northeasterly winter winds (Fig. 2c) because the southwesterly sum-
mer winds exhibit heterogeneous upwind blockage effects, which 
limit the potential to perform controlled experiments. The flow is 
statically stable, where buoyancy suppresses turbulence, and unsta-
ble, where buoyancy contributes to turbulence, approximately 70% 
and 30% of the time, respectively, for the inflow wind directions 
of interest for wake steering in this study ( −30° < α < 45°, stability 
estimation in Supplementary Note 1).

We first focus on assessing the fidelity of the flow model in pre-
dicting the wake steering control strategy, γ*, which maximizes power 
production. To achieve this, we implement a yaw-misalignment off-
set series for upwind turbine 1 (Fig. 2b), which operates in freestream 
conditions. We misalign turbine 1 for yaw values between −25° and 
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Fig. 1 | Schematic of the predictive wind farm flow control model. a, The ABL velocity profile is illustrated in red. Incident ABL winds u∞(z) are measured 
in the field experiments using a LiDAR (Light Detection And Ranging, black box and blue cone). Each turbine is equipped with cup and sonic anemometers 
(black circles) and generates a wake region (black shaded region). To predict the effect of a control strategy on the power of the collective wind farm, we 
model the power production of upwind turbines operating in freestream conditions, P̂u, and the waked turbines, P̂w. b, The flow control model proposed in 
this study is the combination of a power–yaw model P̂(u∞(z), γ), which predicts the power production of a yawed turbine based on the incident wind u∞(z) 
and the yaw-misalignment γ, and a data-assisted wake model, which predicts the wake velocity deficit Δu. The power–yaw model and the wake model are 
described in Supplementary Methods. c, The wake velocity model parameters are calibrated using wind farm data for which the turbines are operating in 
baseline, yaw-aligned conditions, γ = 0. The wake model is then used to predict the farm power given a yaw control strategy, γ ≠ 0.
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25° (Fig. 2d). Each yaw-misalignment set point is held fixed for 1 h 
and does not change depending on the incident wind conditions. 
Because the wind conditions vary in time, the fixed yaw set points 
will often result in suboptimal operation. We performed the model 
validation experiment from February 2020 until April 2020.

We consider the power production of the three-turbine array 
for incident wind speeds in Region II of the power curve (Region 
II consists of operation where wind turbines maximize their coef-
ficients of power36, nominally between 5 m s−1 and 9 m s−1 for the 
turbines of interest). The data-filtering methodology is described 
in Methods. We normalize the power production for each turbine 
at each 1 min averaged instance by the power production of the 
adjacent reference turbine to minimize the effect of the finite wind 
speed bin width and the cubic dependence of power on the wind 
speed. The model is calibrated using equation (2) for instances in 
which turbine 1 commands zero yaw, γ1 = 0°. Given the calibration 
based on standard control, the model is then used to predict the 
power production given the various yaw-misalignment angles that 
were implemented for turbine 1 (Fig. 2d).

We first consider northerly incident wind (α = 0°) for which 
the three-turbine array is slightly offset from alignment. Both the 
measured and model-predicted power for yaw misalignments of 
γ1 = −20°, γ1 = +20° and yaw-aligned operation, γ1 = 0°, are shown in 
Fig. 3. For baseline operation (γ1 = 0°), the powers of turbines 2 and 
3 are approximately 40% of the power of turbine 1 (Fig. 3e).

Our model predicts that negative yaw misalignment would 
reduce the array power production compared with baseline 
yaw-aligned control as the wake of turbine 1 will be steered towards 
the downwind turbines (Fig. 3a). Overall, a negative yaw misalign-
ment of γ1 = −20° reduces the sum of power production for the three 
turbines by 5.1%. The power production for turbine 1 decreases 
due to its yaw misalignment. The power production for turbine 2 
slightly increases due to the reduction of the thrust of turbine 1. The 
power production for turbine 3 is decreased for γ1 = −20°, compared 
with γ1 = 0°.

The wake model velocity and power production predictions 
for γ1 = +20° and α = 0° are shown in Fig. 3c,f, respectively. For 
γ1 = +20°, the measured power productions for the downwind tur-
bines 2 and 3 are statistically significantly higher than for γ1 = 0°, 
as indicated by the 95% confidence intervals. Interestingly, the 
power for turbine 1 is slightly higher with positive yaw misalign-
ment, compared with yaw-aligned operation for both field mea-
surements and model predictions. This slight increase has been 
observed in other studies, depending on the incident wind con-
ditions and turbine control system16,31. The slight power increase 
observed here is caused by a combination of clockwise wind direc-
tion turning with increasing height in the ABL, complex wind speed 
profiles with a subgeostrophic wind speed maximum in the rotor 
area and positive yaw misalignment (Supplementary Note 1 and 
Supplementary Figs. 5 and 6). Collectively, the yaw misalignment 
of turbine 1 to γ1 = +20° increased total power for the three-turbine  
array by 28.6%.

The wake model predictions for all three yaw-misalignment con-
ditions shown in Fig. 3 are within or nearly within the 95% confi-
dence intervals of the field data, validating the predictive accuracy 
of the flow control model proposed in this study. An outstanding 
question is whether the model can predict the yaw-misalignment 
values which maximize power for the utility-scale wind farm. Here 
we have yaw-misaligned turbine 1 for values between γ1 = −25° and 
γ1 = 25° (∣γ1∣ > 25° was not tested for load limitations18). The value of 
γ1 that maximizes the array power depends on the wind direction 
α. We compare the values of γ1 that maximize the array power in 
the utility-scale wind farm data to the values of γ1 that maximize 
the power predictions from the flow control model for different 
inflow wind directions α (positive and negative α are northeasterly 
and northwesterly winds, respectively). The results for six differ-
ent incident wind directions are shown in Fig. 4. The power for the 
individual turbines, depending on the incident wind direction and 
turbine 1 yaw misalignment are shown in Supplementary Note 1. 
The wake model predictions are within the 95% confidence inter-
vals of the field data for 72% of the different combinations of wind 
direction α and yaw misalignment γ1 (46/64). The value of γ1 that 
maximizes power in the flow control model is within 5° of the value 
that maximizes power in the field data for 4/6 values of α. On the 
basis of the observed trend, it is possible that the power-maximizing 
yaw in field conditions is ∣γ∣ > 25° for α = −7.5°, but we do not 
have access to these data given the experimental setup and we do 
not expect ∣γ*∣ to be much greater than 30° given the high power 
loss at turbine 1 for large yaw in mean conditions16, although the 
value of this power loss depends on the time-varying wind condi-
tions. The results demonstrate that the flow control model is able 
to accurately estimate the power-maximizing yaw-misalignment 
angles in utility-scale wind farms with sufficient precision to 
implement wake steering given typical yaw set point lookup table  
resolutions (5°, ref. 16).
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Fig. 2 | Collective wind farm operation experimental setup. a, Photo 
of the utility-scale wind farm of interest in this study, which is located 
in northwest India. b, Top view of the wind turbines of interest with the 
coordinates of the farm normalized by the wind turbine rotor diameter,  
D. The x and y directions correspond to easting and northing, respectively. 
The adjacent reference turbine is denoted as ‘Ref’. c, Measured wind 
rose during the experimental period as recorded by the reference 
wind turbine. The radial distance from the centre corresponds to the 
probability of the wind speed and wind direction in the wind rose, given 
as percentages. d, Commanded yaw-misalignment sequence, γc, for the 
fixed yaw-misalignment flow control model validation experiment. The 
commanded yaw misalignments do not depend on the incident wind 
conditions. During the model validation experiment, each commanded 
yaw-misalignment value is held fixed for 1 h.
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the predictive accuracy of optimization-oriented wake models, 
including the improved modelling of wake curling37–39, veer16,40 and 
stability21,41.

Second, we focus on increasing the wind farm energy produc-
tion through wake steering control. The optimal yaw-misalignment 
angles for the array depend on the incident wind conditions. 
Contrary to the first experiment, we dynamically adapt the 

While the flow control model predictions are within the field 
data confidence intervals for most combinations of wind direction 
and yaw misalignment, the flow control model generally slightly 
underpredicts the power increases from wake steering (Fig. 4). 
These underpredictions are the result of an underprediction of 
the power gain for turbine 2 given γ1 ≠ 0 (turbine-specific results 
in Supplementary Note 1). Future work is required to improve 

a

b

c

d

e

f

Incident wind

Turbine 1 Turbine 2 Turbine 3

18
0.2

0.4

0.6

0.8

1

76543

x∕D

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

y∕
D

210–1

–1

1

0

876543

x∕D

y∕
D

210–1

–1

1

0

876543

x∕D

y∕
D

210–1

–1

1

0

0.2

0.4

0.6

0.8

1.0

1.2

0.2

0.4

0.6

0.8

1.0

1.2

0.2
–5.1%

+28.6%

0.4

0.6

0.8

1.0

1.2

2

Turbine number

3

1 2

Turbine number

3

1 2

Turbine number

3

γ = 0°, data

γ = 0°, data

γ = 20°, data
γ = 0°, model

γ = 0°, model

γ = 20°, model

γ = 0°, data

γ = –20°, data
γ = 0°, model

γ = –20°, model

γ = –20°

γ = 0°

γ = +20°

∕ 
 ∞

∕ 
 ∞

∕ 
 ∞

  ∕
   

10
  ∕

   
10

  ∕
   

10

Fig. 3 | Model predictions and field experiment results from the static yaw-misalignment model validation field experiment for three yaw-misalignment 
values. a–c, Streamwise velocity contours predicted by the flow control model for turbine 1 yaw misalignments of γ1 = −20° (a), γ1 = 0° (b) and γ1 = 20° 
(c) are shown for wind directions α from the north between 0 ± 2.5°. The wind speed is 7 ± 1.5 m s−1 and the turbulence intensity is 5 ± 2.5%, as measured 
by the reference turbine. To account for the finite wind speed bin width, the power for each 1 min averaged data sample for each turbine is normalized 
by the corresponding power of the adjacent reference turbine, and the normalized power is denoted as P. The yaw angles implemented in a and c are 
predicted to steer the wake region towards (a) or away (c) from the downwind turbines, depending on the yaw angle. Steering the wake away from 
the downwind turbines (c) is predicted to increase array power production (power prediction in f). d–f, Comparison of the wake model predictions to 
the measured power production for the three-turbine array for turbine 1 yaw misalignments of γ1 = −20° (d), γ1 = 0° (e) and γ1 = 20° (f). The powers 
are normalized by the power production of the leading turbine 1 with γ1 = 0° (P/Pγ0

1
) so that the results can be interpreted as a fractional gain in power 

compared with baseline control. The field experiment measurements are shown as circles, and the model predictions are shown as diamonds. The shaded 
region corresponds to 95% confidence intervals around the mean, estimated with bootstrapping. The blue and red correspond to yaw alignment and 
yaw misalignment, respectively. The flow control model is calibrated to the yaw-aligned data γ1 = 0°. The flow control model is then used to predict the 
power production for yaw-misaligned operation. For this plot, the measured angular velocity is used in the power–yaw model. The effect of the turbine 1 
yaw misalignment on power production of the waked turbines (2 and 3) depends on the direction (sign) of the yaw. The field experiment measurements 
demonstrate a −5.1% and +28.6% change in the three-turbine array mean power production compared with γ1 = 0° for γ1 = −20° and γ1 = +20°, 
respectively. For γ1 = −20° (d), both the data and the predictive model result in a slight decrease in the power production of turbine 1 compared with 
γ1 = 0°. For γ1 = +20° (f), both the data and the predictive model result in a slight increase in the power production of turbine 1 compared with γ1 = 0°. This 
small gain is associated with the incident wind velocity profiles in the ABL which occurred during operation with γ1 = +20° (Supplementary Figs. 5 and 6); 
such a small gain has also been shown for certain flow conditions and yaw misalignments in previous studies16,31.

Nature eNergY | www.nature.com/natureenergy

http://www.nature.com/natureenergy


ArticlesNature eNergy

the calibration and optimization of the flow control model are in 
the Supplementary Note 2. The model-optimal yaw-misalignment 
angle set points are applied to the wind turbine array based on the 
5 min moving averaged wind conditions measured by the reference 

yaw-misalignment set points depending on the incident wind 
conditions to match γ*, the model-optimal wake steering control 
strategy. We tabulate γ* for three independent input variables: wind 
speed, wind direction and turbulence intensity. Details regarding 

Fig. 4 | results from the static yaw-misalignment field experiment for flow control model validation. The relative gain in the total power for turbines 1, 2, 
and 3 as a function of the yaw misalignment of turbine 1 from the static yaw-misalignment field experiment is shown, 

∑Nt

i Pi(γ1)/
∑Nt

i Pi(γ1 = 0) where 
Nt = 3 is the number of turbines and Pi is the power production of each turbine. The power and number of data samples are shown for different inflow wind 
directions, α, and yaw-misalignment angles, γ: a–l, α = −10° (a,d), α = −7.5° (b,e), α = −5° (c,f), α = −2.5° (g,j), α = 0° (h,k) and α = 2.5° (i,l). The yaw 
angles are shown in degrees. The origin corresponding to zero yaw misalignment is shown with dashed lines. The yaw-misalignment values tested were 
between −25° and 25° (yaw values beyond ∣25°∣ were not considered for loading limits). The wind turbines are approximately aligned for northwesterly 
inflow (α ≈ −5°). The power is normalized by the power produced with zero turbine 1 misalignment γ1 = 0° so that the results can be interpreted as a 
fractional gain in power compared with baseline control. The wind speed is 7 ± 1.5 m s−1, and the turbulence intensity is 5 ± 2.5%, as measured by the 
reference turbine. To account for the finite wind speed bin width, the power for each 1 min averaged data sample for each turbine is normalized by the 
corresponding power of the adjacent reference turbine, and the normalized power is denoted as P. Conditional averages with n > 25 data samples are 
considered. In blue, we show the field experiment mean data with 95% confidence intervals from bootstrapping. Mean flow control model predictions with 
95% confidence intervals from bootstrapping are shown in red. The flow control model predictions use the predicted wind turbine angular velocities. The 
power-maximizing yaw-misalignment angle for turbine 1 predicted by the flow control model is given in gold. Flow control model predictions assuming that 
the power production of yawed turbines is P̂(γ) ∼ cos3(γ) are shown in green. The impact of the yaw misalignment of turbine 1 on the power of each of 
the three individual turbines of interest is shown in Supplementary Note 1 (Supplementary Figs. 3–9).
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conditions. For example, we expect wake steering to have a rela-
tively small effect on wind farm power production for high wind 
speeds (above the rated wind speed of the generator where power 
is constant at the rated power) because wake losses are relatively 
small. However, higher speeds contribute more to wind farm energy 
than lower speeds. To assess the collective benefit of wake steering, 
we assess the impact of wake steering on the array energy produc-
tion. The gain in energy from wake steering control, compared with 
baseline individual control, is computed using equations (4)–(6) 
and is described in Methods.

First, we consider the gain in energy for each independent wind 
direction. We first consider wind speeds between 6 m s−1 and 8 m s−1, 
the centre of Region II of the power curve, selected to ensure we do 
not cross into other control regions. These were the wind speeds of 
interest in the model validation experiment (Fig. 4). The energy gain 
from wake steering control is shown for each wind direction in Fig. 5a.  
The number of unique 1 min averaged data samples collected for 
wake steering operation for each α is shown in Fig. 5b (similar num-
bers of samples were collected for aligned control). Wake steering 
results in statistically significant gains in energy when active (γ ≠ 0).

Considering the full wind speed range encountered (0 m s−1 to 
20 m s−1), the energy gain results are qualitatively similar although 
the magnitude of gain is decreased. This is expected because wake 
steering control will not be active for higher wind speeds (above 
rated), given limited wake losses. The energy gain from wake steering 
control decreased more for α < −5° than for α > −5°. This decrease 
is primarily associated with an energy decrease for the simultane-
ously waked and yaw-misaligned turbine 2 at moderate wind speeds 
between 8 and 10 m s−1, as detailed further in Supplementary Note 3 
(Supplementary Figs. 10–12).

We compute the energy gain over a sector of wind directions 
using equation (7) (Methods). The energy gains over two wind 
direction sectors for wind speeds between 6 < u < 8 m s−1 (Region 
II) are shown in Table 1. For Region II operation, wake steering has 
a statistically significant increase for both the incident wind direc-
tions where wake steering is active (3.0% ± 0.7%) and the full wind 
direction distribution between −180° < α < 180° (1.1% ± 0.4%). 
Because wake steering is active only for wind directions that lead 
to wake interactions, the degree to which wake steering increases 
total energy production depends on the fraction of time in which 
the wind is oriented in these directions. In this experiment, wake 
steering, which was active only between −17.5° and 12.5°, increased 
energy to a sufficient degree that it resulted in a statistically signifi-
cant increase in the energy production in Region II for the full wind 
direction distribution ( −180° to 180°).

The sector energy gains for the full wind speed range of 
0 < u < 20 m s−1 are shown in Table 1. For the wind directions for 
which wake steering is active, the energy production increase due 
to wake steering is statistically significant (1.2% ± 0.4%). For the full 
wind speed and direction range, the energy production gain in this 
experiment is 0.4% ± 0.3%.

The wake steering control method developed in this study 
focuses on maximizing wind farm energy production. Wake  

wind turbine. During this experiment, we construct datasets for the 
wind farm power production in both wake steering and baseline 
yaw-aligned control. We switch between wake steering control and 
baseline control every 2.5 h (experimental details in Methods). We 
performed the energy maximization experiment from December 
2020 until March 2021.

We consider the impact of wake steering control on wind 
farm energy production. The previous experiment demonstrated 
that wake steering can increase or decrease power production, 
depending on the incident wind conditions and the prescribed 
yaw-misalignment values (Fig. 4). In this second experiment, we 
set the yaw-misalignment values for each turbine in the farm to 
the model-optimal result γ* depending on the incident wind speed, 
direction and turbulence intensity. Wake steering control is active 
(γ ≠ 0) for −17.5° < α < 12.5°, because these are the wind direc-
tions with wake losses. Although the commanded yaw is zero out-
side of −17.5° < α < 12.5°, our analysis considers −20° < α < 15° to 
account for hysteresis in the yaw controller30.

The effect of wake steering on the array power production will 
depend on the prescribed yaw misalignment and the incident wind 
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Fig. 5 | results from utility-scale collective wind farm operation to 
maximize energy production. a, Energy gain from the farm energy 
maximization wake steering field experiment. The results for wind speeds 
between 6 < u < 8 m s−1 and 0 < u < 20 m s−1 (full wind speed range) are 
shown in orange and blue, respectively. The shaded region corresponds to 
95% confidence intervals around the mean estimated with bootstrapping. 
The wind turbines are approximately aligned for northwesterly inflow 
(α ≈ −5°), shown with a solid black vertical line. The vertical dashed lines 
indicate the wind direction bounds for which collective operation is applied 
(γ ≠ 0°), −20° < α < 15°. b, Number of unique 1 min averaged data samples 
collected for each wind direction for wake steering operation. The number 
of data points collected for baseline yaw-aligned operation is similar. c, The 
yaw-misalignment set points applied to the farm, which maximize wind 
farm power production in the flow control model, γ*, for each turbine. The 
power-maximizing yaw angles, γ*, depend on the incident wind conditions 
of: wind speed, wind direction and turbulence intensity. The yaw angles for 
incident wind speeds of 5 ± 1 m s−1 and turbulence intensities of 7.5 ± 1.25% 
are shown. The full yaw-misalignment lookup table is provided in the 
supporting dataset.

Table 1 | Wind farm energy gain from collective wake steering 
operation over wind direction and wind speed sectors

Wind speed Incident wind direction sector

(m s−1) −20° < α < 15° −180° < α < 180°

6 < u < 8 +3.0% ± 0.7% +1.1% ± 0.4%

0 < u < 20 (full u range) +1.2% ± 0.4% +0.4% ± 0.3%

The uncertainty estimates are 95% confidence intervals from bootstrapping. The wind farm energy 
gain is estimated using equation (7) (Methods).
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when wake steering is not active at high winds), the energy gain is 
1.2% ± 0.4%. For Region II wind speeds, the energy gain across all 
incident wind directions is 1.1% ± 0.4%. Finally, for all wind speeds 
and directions, the energy gain is 0.4% ± 0.3%.

The gain in energy production at a commercial wind farm 
depends on the farm layout and the site-specific wind conditions. 
Given the incident winds observed during this experiment at the 
Indian farm, the energy gain is 1.1% and 0.4% for Region II and all 
wind speeds respectively. For wind generation to produce a larger 
fraction of energy worldwide, wind farm development will have to 
expand to onshore regions of lower mean wind speed and offshore 
environments, where wake losses are anticipated to be higher43. In 
this study, we demonstrate that wake steering control is a mecha-
nism by which wind farm energy can be increased. We also demon-
strate that the proposed flow control modelling framework is able to 
accurately predict the relative gain in power production from wake 
steering (model predictions are within the 95% confidence intervals 
of the field data for 72% (46/64) of the considered wind direction 
and yaw-misalignment cases), enabling its use in wind farm control 
and potentially in farm design44.

Further improvements in active wake control are necessary to 
increase the efficacy of wake steering, such as closed-loop con-
trol21,27,35,45 or machine learning-based methods46. Future research to 
develop wind farm flow control methodologies that jointly maxi-
mize wind farm energy production and minimize loads can further 
advance the implementation of collective control. Additionally, 
further improvements in flow control models are necessary to cap-
ture three-dimensional effects such as wake curling37–39, veer16,40 and 
stability21,41 and to improve computationally efficient wind turbine 
fatigue load models18,47.

To achieve climate goals, renewables must produce most of the 
demanded global energy. Wake steering is especially effective at 
increasing farm production at low wind speeds. Because annual 
wind speeds in India and other emerging economies are relatively 
low48, wake steering is a promising mechanism to increase renew-
able energy production. Beyond higher annual energy production, 
low-carbon grids will require more predictable and controllable 
wind energy with reduced intermittency. Wake steering contrib-
utes to our ability to actively control the production from wind 
farms. Improvements in our ability to model, control and design 
wind energy generation will facilitate a more rapid energy grid 
decarbonization.

Methods
Predictive wind farm flow control model. With the goal of selecting the 
operational strategy for utility-scale wind turbines which maximizes energy 
production, we develop a wind farm flow control model that accounts for the 
variable atmospheric conditions. To remain tractable for controls-oriented 
modelling, the wind farm flow model must be computationally efficient49. But the 
model must be sufficiently accurate to ensure that the model-optimal yaw angles 
are closely representing the true power-maximizing yaw angles in complex field 
conditions.

In wind farms, there are limited sensors that measure the freestream wind flow 
at multiple heights (Fig. 1). Sensors that measure the wind flow up to the wind 
turbine hub height, which is approximately 100 m in altitude, are expensive11. Such 
sensors tend to be placed sparsely and suboptimally in wind farms50 and are useful 
only for measuring the incident wind profiles, rather than velocities in turbine 
wakes. In summary, we generally have access to the incident wind profile through 
LiDAR or meteorological tower measurements, but we require a wake model to 
predict the wind flow field in the wake of turbines as a function of their operational 
strategy (Fig. 1). Further discussion of the role of the atmospheric conditions on 
the wind farm power is given in Supplementary Note 1.

We model the power production of yaw-misaligned wind turbines given the 
incident wind conditions using blade element theory. We denote the modelled 
power of upwind (unwaked) turbines as P̂u. Previous approaches have used a 
tuned empirical model to estimate the power production of yaw-misaligned 
turbines, where the power of the yaw-misaligned turbine is estimated as 
P̂u(γ) = P̂u(γ = 0) · cosPp (γ), where Pp is a tuned parameter24. This empirical 
approach leads to substantial errors depending on the incident winds in the ABL16. 
Given variations in the wind speed and direction as a function of height z in the 

steering control will influence the fatigue loads of the individual 
wind turbines in the farm through different mechanisms18,24; wake 
steering can either increase or decrease different turbine fatigue 
loads. To enable industry adoption of wind farm control, a detailed 
understanding of the effects of wake steering on wind turbine 
fatigue loads is important. Wake steering can affect the yawed tur-
bine yaw duty, the turbulence intensity incident to waked turbines, 
turbine blade-bending moments, the waked turbines torsional 
moments in partial waking scenarios and other loads. Because tur-
bulence intensity has a substantial impact on wind turbine loads18,42, 
wake steering can potentially be used to reduce waked turbine 
loads by reducing the incident turbulence intensity. Waked turbines 
operating in a partial wake, where the wake overlaps partially with 
the downwind turbine rotor, exhibit increased torsion24. Because  
wake steering deflects wakes, it may be a mechanism to either 
increase or decrease the waked turbine torsion, depending on the 
turbine layout and the wake steering strategy.

While direct load measurements were not available during the 
present field experiments, direct measurements of the determi-
nants of farm loads were recorded. Turbulence intensity is reported 
at each turbine of interest. Wake steering reduced the turbulence 
intensity incident to downwind, waked turbines. For example, for 
α = 0° and γ1 = +20°, the turbulence intensities incident to turbines 
2 and 3 were decreased by 38% and 27%, respectively (full results in 
Supplementary Table 1). However, for α = 0° and γ1 = −20°, where 
the wake is steered towards the downwind turbines as an intention-
ally suboptimal strategy in the fixed yaw experiment (Fig. 3a), the 
turbulence intensity incident to turbine 2 decreased by just 20% and 
the turbulence intensity incident to turbine 3 increased 4%. The 
standard individual wind turbine controller led to yaw activations 
(average amount of activations of yaw system during a 5 min time 
window), which were 29% of the maximum value recommended 
by the original equipment manufacturer (to limit fatigue loads and 
ensure normal turbine lifetime) for turbine 1, while wake steering 
increased this value to 38%, which is still significantly below the rec-
ommended threshold (Supplementary Figure 13). Finally, aeroelas-
tic simulations suggest overall bending moment impacts between 
0% and 5%, on average (that is, averaged over the full experimen-
tal window including periods of yaw alignment and misalignment 
depending on the inflow conditions, as in Fig. 5c) for the open-loop 
wind farm control strategy used in the energy maximization experi-
ment. The potential impact of wake steering on fatigue loads is 
further discussed in Supplementary Note 4. Because wake steering 
can either increase or decrease turbine loads, future work should 
improve optimization-oriented load models that can be leveraged 
for multi-objective wind farm control optimization that maximizes 
energy and minimizes fatigue. The field experimental data pre-
sented in this study can be used to validate future models for the 
determinants of fatigue loads.

Conclusions
We demonstrate the potential for collective wind farm control at 
utility scale. In this study, we develop a predictive physics-based, 
data-assisted wind farm flow control model. To validate the model, 
we design a multi-month field experiment at a utility-scale wind 
farm. We demonstrate that the optimization-oriented flow control 
model is able to predict the yaw-misalignment angles that maximize 
the utility-scale wind turbine array power production within ± 5° 
for most conditions and the correct yaw-misalignment direction for 
all wind conditions.

We design a wake steering strategy by maximizing the power pro-
duction of the wind turbine array depending on the incident atmo-
spheric conditions in the validated model. For wind directions for 
which wake steering control is active and Region II wind speeds, the 
array energy production is increased by 3.0% ± 0.7%. For the same 
wind directions, considering the full wind speed range (including 
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the energy production of the test turbine of interest to the energy production of the 
reference turbine. The energy ratio is given by

Er =
∑Nb

i=1 wiP test
i

∑Nb
i=1 wiP ref

i
, (4)

where Nb is the number of wind speed bins, wi is the wind condition-specific 
weighting factor and P  is the mean power production within the particular wind 
speed bin. The energy ratio is computed for each wind direction. Additionally, 
the energy ratio is computed for both baseline yaw-aligned control (base) and for 
wake steering control (steer). Because the experimental window is finite, the wind 
condition distributions between collective and standard control are not identical30. 
To account for this, the weighting factors are defined using the number of samples 
from both control strategies

wi
base

=
nibase + nisteer

Nbase + Nsteer wi
steer

=
nibase + nisteer

Nbase + Nsteer , (5)

where wi
base and wi

steer are the weights (wi) used in the energy ratio calculation for 
the baseline yaw-aligned and the wake steering cases, respectively. The number 
of samples in the wind speed bin for a particular wind direction is given by ni. 
The number of total samples for a particular wind direction is given by N. We 
test the influence of different weighting approaches in Supplementary Note 5 
(Supplementary Table 2). We find that the different weighting methods do not have 
a statistically significant impact on our energy gain results. The fractional gain in 
energy for each wind direction is

R =
Ersteer

Erbase
. (6)

The influence of wake steering on the energy production over a sector of wind 
directions can be approximated using the energy ratio. The sector energy gain is

Gr =

Nα∑

i=1
Wi

refRi, (7)

where Nα is the number of wind directions considered in the sector energy analysis 
and Ri is the energy ratio gain for each wind direction (equation (6)). The weights 
are

Wi
ref

=
EirefNi

ref
∑Nα

i=1 EirefNiref
, (8)

which represents the fraction of energy produced in each wind direction 
(accounting for the observed wind rose during the experiment). The averaged 
power produced by the reference turbine for each wind direction is Eiref , and Ni

ref  
is the number of samples for each wind direction. Confidence intervals for each 
statistic are calculated using bootstrapping.

Farm energy maximization data filtering. For the wake steering farm energy 
maximization experiment, we switch between wake steering control and baseline 
yaw-aligned control with a period of 2.5 h. We selected a switching period of 
2.5 h to balance the aim of collecting data in similar conditions while limiting 
the number of transitions between control strategies. When baseline yaw-aligned 
control is activated, all turbines implement a strategy of γ = 0°. When wake steering 
is activated, turbines 1 and 2 implement a dynamic yaw-misalignment sequence 
based on the incident wind conditions (Fig. 5c), and turbine 3 implements a 
yaw-aligned strategy of γ = 0°. As with the fixed yaw experiment, the standard 
wind turbine yaw control system is used to track the intended yaw-misalignment 
set point, which now varies as a function of the incident wind conditions. Data are 
aggregated in 1 min averages.

We compute the energy ratio (equation (4)) using the data for the two different 
control approaches (wake steering and baseline yaw aligned). We consider wind 
speed and direction ranges as specified by Table 1 with a step size of 1 m s−1. We 
consider only wind directions with more than 20 data points in both control cases. 
We consider only wind speed subsets of a wind direction bin with more than 
five data points in both control cases. Because high turbulence was infrequent in 
these experiments and it gives high noise-to-signal ratio and turbine loads18 and 
wake losses are minimal in inflow with high turbulence, turbulence intensities 
less than 20% are considered for wake steering. We consider data only in which all 
four turbines (three test turbines and reference turbine) are active and operating 
normally.

Data availability
All data generated or analysed during this study are included in the published 
article and its Supplementary Information. The data are available at: https://doi. 
org/10.5281/zenodo.6621555. Source data are provided with this paper.

ABL, we calculate the forces on the blade at each location in the wind turbine rotor 
area as a function of the radial r and azimuthal θ positions (schematic of the model 
shown in Supplementary Fig. 1). The wind turbine power production is modelled 
as the integration of the incremental torque over the rotor area multiplied by the 
angular velocity

P̂u = Ω
∫ 2π

0

∫ R

0
rdfτ(r, θ), (1)

where Ω is the blade angular velocity, R is the rotor radius and dfτ is the tangential 
force at a particular blade section. The tangential forces depend on characteristics 
of the wind turbine, including aerodynamic properties of the blades, the imposed 
yaw misalignment and the incident wind profiles16. The coefficients of lift and drag 
for the turbines of interest were provided by the manufacturer. More details on the 
power–yaw model are provided in Supplementary Methods.

We model the power production of downwind, waked turbines ( P̂w)using a 
computationally efficient analytical wake model developed by Howland et al.19, 
which is based on a lifting line wake deflection model34. The full wake model 
is described in Supplementary Methods. We leverage modified linear wake 
superposition and an analytical secondary steering model51, which models the 
effect of the non-zero lateral velocity at turbines downwind of a yawed turbine52. 
To predict wind turbine power production in a computationally efficient fashion, 
analytical wake models parameterize wake and ABL turbulence with an unknown 
wake spreading rate kw

10,21,25. Traditional approaches have tuned the wake model 
parameter to idealized data from simulations53, which neglects the site-specific 
effects on the model parameters19 and the effects of the stability of the ABL21. 
Instead, we estimate the wake model parameters using optimization-based inverse 
problem techniques54, where we minimize the mean squared difference between 
the model predictions and field calibration data

kw∗ = arg min(P̂w(kw, γ=0) − Pw(γ= 0))2. (2)

We calibrate the wake spreading rate and the proportionality constant of 
the presumed Gaussian wake using an offline variant of the ensemble Kalman 
filter21,35,55 (Supplementary Methods). The calibration leverages site- and wind 
condition-specific historical data collected where the wind farm is in standard 
individual operation (γ = 0). The wake model parameters are calibrated for each 
wind condition bin, considering wind speed, wind direction and turbulence 
intensity. The calibrated model parameters are then used to predict the power 
production for the wind farm in wake steering configurations (γ ≠ 0). The 
power-maximizing wind farm control strategy with Nt turbines is predicted using 
the flow control model as

γ∗ = argmax
Nt∑

i=1
P̂i(γ). (3)

We estimate γ* using gradient-based optimization of the flow control model19 
for each wind condition bin. More details regarding the set point optimization are 
provided in Supplementary Note 2.

Experimental setup. We record data from each turbine in the form of 1 min 
averaged Supervisory Control and Data Acquisition data, which includes power 
production, nacelle position, blade pitch and other relevant turbine variables. 
The wind profiles depending on height are recorded in 1 min averages using a 
Leosphere Windcube V2.0 profiling LiDAR on site.

Fixed yaw-misalignment experiment data filtering. For the fixed 
yaw-misalignment experiment, turbine 1 (Fig. 2b) implements a yaw-misalignment 
set point sequence between γ = −25° and +25° (Fig. 2d). The yaw-misalignment 
set points are active for Region II wind speeds, between approximately 5 m s−1 and 
9 m s−1. Because the wind direction in the ABL is constantly evolving, the standard 
wind turbine yaw control system is used to track the yaw-misalignment set point36. 
The yaw set point tracking ability of the turbine model of interest was validated by 
Howland et al.16. Data are aggregated in 1 min averages. We consider data only in 
which all four turbines (three test turbines and reference turbine) are active and 
operating normally.

For the fixed yaw-misalignment experiment, we consider conditional averages 
of the power ratio for the turbines of interest. We characterize the freestream 
wind conditions using measurements made by the reference turbine (Fig. 2b). 
We focus on wind speeds between 5.5 m s−1 and 8.5 m s−1. Because the wake 
interactions depend on the turbulence intensity21, we restrict the analysis to 
turbulence intensities between 2.5% and 7.5%. We characterize the realized yaw 
misalignment of turbine 1 based on the nacelle-mounted measurements of the 
relative wind direction of turbine 1, measured by a sonic anemometer. We consider 
yaw misalignment for values between −25° and 25° with a step size of 5°. The wind 
direction is considered for values between −10° and 2.5° with a step size of 2.5°.

Energy gain analysis methodology. To estimate the impact of the wake steering 
control on energy production, we compute the energy ratio, which is the ratio of 
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Code availability
The code used during this study is provided in the Supplementary Software Files. 
Instructions for the code use are provided as examples and comments in the 
Supplementary Software Files. The code is available at: https://doi.org/10.5281/ 
zenodo.6621555.
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